8 research outputs found

    Bacterial Quorum Sensing: Biofilm Formation, Survival Behaviour and Antibiotic Resistance

    No full text
    Biofilms are association of microorganisms that attach to each other to a surface enclosed in a self-generated extracellular matrix. Virtually (99.9%) all microorganisms have the competence to form biofilm. The formation of biofilm is a complex process, in which bacterial cells transform from planktonic cells to sessile mode of growth. The biofilm development results from the expression of specific genes. Biofilms have been developed as an adaptive strategy of bacterial species to survive in adverse environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Molecular interaction and details of biofilm formation are not well-understood as bacteria in the biofilm have several orders of magnitude, more resistant to antibiotics compared to planktonic bacteria. Thus, the currently available drugs typically failed to target bacterial biofilms. Quorum sensing (QS) is a process of intercellular signalling or cell-cell communication and a vital regulatory mechanism for coordinating biofilm formation including common activities and physiological processes such as symbiosis, formation of spores or fruiting bodies, antibiotics synthesis, genetic competence, apoptosis and virulence in many bacterial species using extracellular QS signalling molecules, which is often referred to as autoinducers (AIs). Microorganisms produce a wide variety of QS signalling molecules that can be self-recognized in a concentration-dependent manner and subsequently induce or suppress expression of QS-controlled genes. Bacterial QS regulation is established through a wide range of signals such as oligopeptides, N-acyl homoserine lactones (AHLs), furanosyl borate, hydroxy palmitic acid methyl ester and methyldodecanoic acid. In this chapter, we highlight the current understanding of the processes that lead to bacterial biofilm formation, survival behaviours and mechanisms of antimicrobial resistance in bacteria

    Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance.

    No full text
    Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed

    Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units

    No full text
    Standard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU. These new modalities include tracking movements and body orientation, quantifying the physiological benefits of skin-to-skin care, capturing acoustic signatures of cardiac activity, recording vocal biomarkers associated with tonality and temporal characteristics of crying and monitoring a reliable surrogate for systolic blood pressure. These platforms have the potential to substantially enhance the quality of neonatal and pediatric critical care

    Proteomics dedicated to biofilmology: What have we learned from a decade of research?

    No full text
    corecore