435 research outputs found

    PTL: A Model Transformation Language based on Logic Programming

    Get PDF
    In this paper we present a model transformation language based on logic programming. The language, called PTL (Prolog based Transformation Language), can be considered as a hybrid language in which ATL (Atlas Transformation Language)-style rules are combined with logic rules for defining transformations. ATL-style rules are used to define mappings from source models to target models while logic rules are used as helpers. The implementation of PTL is based on the encoding of the ATL-style rules by Prolog rules. Thus, PTL makes use of Prolog as a transformation engine. We have provided a declarative semantics to PTL and proved the semantics equivalent to the encoded program. We have studied an encoding of OCL (Object Constraint Language) with Prolog goals in order to map ATL to PTL. Thus a subset of PTL can be considered equivalent to a subset of ATL. The proposed language can be also used for model validation, that is, for checking constraints on models and transformations. We have equipped our language with debugging and tracing capabilities which help developers to detect programming errors in PTL rules. Additionally, we have developed an Eclipse plugin for editing PTL programs, as well as for debugging, tracing and validation. Finally, we have evaluated the language with several transformation examples as well as tested the performance with large models

    How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?

    Get PDF
    The factors governing the rate of change in the amount of atmospheric water vapor are analyzed in simulations of climate change. The global-mean amount of water vapor is estimated to increase at a differential rate of 7.3% K[superscript − 1] with respect to global-mean surface air temperature in the multi-model mean. Larger rates of change result if the fractional change is evaluated over a finite change in temperature (e.g., 8.2% K [superscript − 1] for a 3 K warming), and rates of change of zonal-mean column water vapor range from 6 to 12% K [superscript − 1] depending on latitude. Clausius–Clapeyron scaling is directly evaluated using an invariant distribution of monthly-mean relative humidity, giving a rate of 7.4% K − 1 for global-mean water vapor. There are deviations from Clausius–Clapeyron scaling of zonal-mean column water vapor in the tropics and mid-latitudes, but they largely cancel in the global mean. A purely thermodynamic scaling based on a saturated troposphere gives a higher global rate of 7.9% K [superscript − 1]. Surface specific humidity increases at a rate of 5.7% K [superscript − 1], considerably lower than the rate for global-mean water vapor. Surface specific humidity closely follows Clausius–Clapeyron scaling over ocean. But there are widespread decreases in surface relative humidity over land (by more than 1% K − 1 in many regions), and it is argued that decreases of this magnitude could result from the land/ocean contrast in surface warming

    Nutrient and herbivore alterations cause uncoupled changes in producer diversity, biomass and ecosystem function, but not in overall multifunctionality

    Get PDF
    Altered nutrient cycles and consumer populations are among the top anthropogenic influences on ecosystems. However, studies on the simultaneous impacts of human-driven environmental alterations on ecosystem functions, and the overall change in system multifunctionality are scarce. We used estuarine tidal flats to study the effects of changes in herbivore density and nutrient availability on benthic microalgae (diversity, abundance and biomass) and ecosystem functions (N2-fixation, denitrification, extracellular polymeric substances -EPS- as a proxy for sediment cohesiveness, sediment water content as a proxy of water retention capacity and sediment organic matter). We found consistent strong impacts of modified herbivory and weak effects of increased nutrient availability on the abundance, biomass and diversity of benthic microalgae. However, the effects on specific ecosystem functions were disparate. Some functions were independently affected by nutrient addition (N2-fixation), modified herbivory (sediment organic matter and water content), or their interaction (denitrification), while others were not affected (EPS). Overall system multifunction remained invariant despite changes in specific functions. This study reveals that anthropogenic pressures can induce decoupled effects between community structure and specific ecosystem functions. Our results highlight the need to address several ecosystem functions simultaneously for better ecosystem characterization and management.Instituto de Limnología "Dr. Raul A. Ringuelet

    Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome

    Get PDF
    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Jumpponen, Ari. Kansas State University; Estados UnidosFil: Veach, Allison. Kansas State University; Estados UnidosFil: Ialonardi, Florencia Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Iribarne, Oscar Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Silliman, Brian Red. University Of Duke. Nicholas School Of Environment. Marine Science And Conservation División; Estados Unido

    Capacidad de fijación de nitrógeno de estirpes autóctonas de Mesorhizobium spp. en simbiosis con dos poblaciones mejoradas de Lotus glaber (Miller)

    Get PDF
    Se evaluó la capacidad de nodulación y fijación de nitrógeno de tres estirpes de Mesorhizobium sp. que fueron aislados de los suelos de la depresión del río Salado, Provincia de Buenos Aires. Estas cepas se inocularon en dos poblaciones mejoradas de Lotus glaber FA2 y FA7. Las cepas autóctonas en simbiosis con las dos poblaciones de Lotus nodularon y fijaron mas nitrógeno que las plantas testigo no inoculadas y que los testigos inoculados con la cepa control USDA3471. Las poblaciones de Lotus glaber difirieron en su habilidad para desarrollar en presencia de cantidades limitantes de nitrógeno. Se concluyó que las bacterias autóctonas, tienen una alta capacidad de fijación de nitrógeno y por lo tanto constituyen una fuente para la selección de cepas en la formulación de inoculantes comerciales.We evaluated the ability of Mesorhizobium strains that were isolated from the soils of the Salado River Basin in the province of Buenos Aires. Two populations of Lotus glaber, FA2 and FA7, were inoculated with three rizobia isolates L10, L15 and L22. The autoctonous strains nodulated and fixed more nitrogen than uninoculated (negative) and USDA3471 inoculated (positive) control plants. The populations of Lotus glaber differed in their ability to grow in the presence of low levels of available nitrogen. We concluded that the soils of the Salado river basin host bacteria with high nitrogen fixing potential that may be used in inoculant production

    Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass

    Get PDF
    Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.EEA Santa CruzFil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras (IIMyC); Argentina.Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras (IIMyC); Argentina.Fil: Chaneton, Enrique J. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.Fil: Chaneton, Enrique J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA); Argentina.Fil: Iribarne, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras (IIMyC); Argentina.Fil: Tognetti, Pedro M. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.Fil: Tognetti, Pedro M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA); Argentina.Fil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados UnidosFil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution & Behavior; Estados UnidosFil: Bruschetti, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras (IIMyC); Argentina.Fil: MacDougall, Andrew S. University of Guelph.Department of Integrative Biology; CanadáFil: Pascual, Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras (IIMyC); Argentina.Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Hautier, Yann. Utrecht University. Department of Biology. Ecology and Biodiversity Group; Países Bajo

    Designing comparative effectiveness trials of surgical ablation for atrial fibrillation: Experience of the Cardiothoracic Surgical Trials Network

    Get PDF
    ObjectiveSince the introduction of the cut-and-sew Cox maze procedure for atrial fibrillation, there has been substantial innovation in techniques for ablation. Use of alternative energy sources for ablation simplified the procedure and has resulted in dramatic increase in the number of patients with atrial fibrillation treated by surgical ablation. Despite its increasingly widespread adoption, there is lack of rigorous clinical evidence to establish this procedure as an effective clinical therapy.MethodsThis article describes a comparative effectiveness randomized trial, supported by the Cardiothoracic Surgical Clinical Trials Network, of surgical ablation with left atrial appendage closure versus left atrial appendage closure alone in patients with persistent and long-standing persistent atrial fibrillation undergoing mitral valve surgery. Nested within this trial is a further randomized comparison of 2 different lesions sets: pulmonary vein isolation and the full maze lesion set.ResultsThis article addresses trial design challenges, including how best to characterize the target population, operationalize freedom from atrial fibrillation as a primary end point, account for the impact of antiarrhythmic drugs, and measure and analyze secondary end points, such as postoperative atrial fibrillation load.ConclusionsThis article concludes by discussing how insights that emerge from this trial may affect surgical practice and guide future research in this area

    Nutrient and herbivore alterations cause uncoupled changes in producer diversity, biomass and ecosystem function, but not in overall multifunctionality

    Get PDF
    Altered nutrient cycles and consumer populations are among the top anthropogenic influences on ecosystems. However, studies on the simultaneous impacts of human-driven environmental alterations on ecosystem functions, and the overall change in system multifunctionality are scarce. We used estuarine tidal flats to study the effects of changes in herbivore density and nutrient availability on benthic microalgae (diversity, abundance and biomass) and ecosystem functions (N2-fixation, denitrification, extracellular polymeric substances -EPS- as a proxy for sediment cohesiveness, sediment water content as a proxy of water retention capacity and sediment organic matter). We found consistent strong impacts of modified herbivory and weak effects of increased nutrient availability on the abundance, biomass and diversity of benthic microalgae. However, the effects on specific ecosystem functions were disparate. Some functions were independently affected by nutrient addition (N2-fixation), modified herbivory (sediment organic matter and water content), or their interaction (denitrification), while others were not affected (EPS). Overall system multifunction remained invariant despite changes in specific functions. This study reveals that anthropogenic pressures can induce decoupled effects between community structure and specific ecosystem functions. Our results highlight the need to address several ecosystem functions simultaneously for better ecosystem characterization and management.Instituto de Limnología "Dr. Raul A. Ringuelet
    corecore