183 research outputs found
Recommended from our members
A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns
Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses
Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components
The recent Zika virus outbreak highlights the need for low-cost diagnostics that can be rapidly developed for distribution and use in pandemic regions. Here, we report a pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome. By linking isothermal RNA amplification to toehold switch RNA sensors, we detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences. When coupled with a novel CRISPR/Cas9-based module, our sensors can discriminate between viral strains with single-base resolution. We successfully demonstrate a simple, field-ready sample-processing workflow and detect Zika virus from the plasma of a viremic macaque. Our freeze-dried biomolecular platform resolves important practical limitations to the deployment of molecular diagnostics in the field and demonstrates how synthetic biology can be used to develop diagnostic tools for confronting global health crises.Defense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006)United States. National Institutes of Health (NIH AI100190
Diagnostics in Waldenström's macroglobulinemia: a consensus statement of the European Consortium for Waldenström's Macroglobulinemia
Molecular remission is an independent predictor of progression-free survival in patients with Waldenström macroglobulinemia treated with chemo-immunotherapy: Results from the FIL_BIOWM study
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Protective effects of pollenaid plus soft gel capsules’ hydroalcoholic extract in isolated prostates and ovaries exposed to lipopolysaccharide
Pollen extract represents an innovative approach for the management of the clinical symptoms related to prostatitis and pelvic inflammatory disease (PID). In this context, the aims of the present work were to analyze the phenolic composition of a hydroalcoholic extract of PollenAid Plus soft gel capsules, and to evaluate the extract’s cytotoxic effects, in human prostate cancer PC3 cells and human ovary cancer OVCAR-3 cells. Additionally, protective effects were investigated in isolated prostate and ovary specimens exposed to lipopolysaccharide (LPS). The phytochemical investigation identified catechin, chlorogenic acid, gentisic acid, and 3-hydroxytyrosol as the prominent phenolics. The extract did not exert a relevant cytotoxic effect on PC3 and OVCAR-3 cells. However, the extract showed a dose-dependent inhibition of pro-inflammatory IL-6 and TNF-α gene expression in prostate
and ovary specimens, and the extract was effective in preventing the LPS-induced upregulation of CAT and SOD gene expression, which are deeply involved in tissue antioxidant defense systems. Finally, a docking approach suggested the capability of catechin and chlorogenic acid to interact with the TRPV1 receptor, playing a master role in prostate inflammation. Overall, the present findings demonstrated anti-inflammatory and antioxidant effects of this formulation; thus, suggesting its
capability in the management of the clinical symptoms related to prostatitis and PID
Molecular remission is an independent predictor of progression-free survival in patients with Waldenström macroglobulinemia treated with chemo-immunotherapy: Results from the FIL_BIOWM study
Waldenström macroglobulinemia (WM) is a mature B-cell neoplasm characterized by bone marrow (BM) infiltration by lymphoplasmacytic lymphoma and a monoclonal IgM protein in the serum.1 The past 2 decades have witnessed important treatment advances, with the introduction of chemo-immunotherapy (CIT) in the early 2000s and ibrutinib in more recent years. Despite these progresses, most patients eventually relapse after treatment. The depth of clinical response following rituximab-based therapy has revealed an important predictor of progression-free survival (PFS).International Waldenstrom's Macroglobulinemia Foundation
A vision for a lightweight railway wheelset of the future
Rail vehicle lightweighting using fibre reinforced polymer composite materials is essential for the future of rail. This is recognised as a means of reducing carbon dioxide production through lower energy consumption, as well as reducing the impact on track degradation, thus delivering improved rail capacity and performance. This paper presents an overview of the work conducted within work package three of the NEXTGEAR project focused on the ‘wheelset of the future’. Three concepts for a hybrid metallic-composite railway axle are proposed and their strengths and weaknesses are assessed. A finite element analysis on the selected concept was conducted, including a solution for the bonded joints of the metallic collars which provide the interface to the wheels and bearings. An axle mass reduction of over 63% was shown. An overview is also provided regarding the analysis of manufacturability of the axle, non-destructive methods for axle inspection/structural health monitoring and effects of impacts from ballast stones. Finally, a preliminary evaluation of the benefits arising from the reduction of the unsprung masses is provided, based on multibody simulations of vehicle dynamics
- …
