20 research outputs found

    Role of Plant-Specific N-Terminal Domain of Maize CK2β1 Subunit in CK2β Functions and Holoenzyme Regulation

    Get PDF
    Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes

    Phosphorylation of the 12 S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds

    No full text
    Cruciferin (a 12 S globulin) is the most abundant storage protein in the seeds of Arabidopsis thaliana (thale cress) and other crucifers, sharing structural similarity with the cupin superfamily of proteins. Cruciferin is synthesized as a precursor in the rough endoplasmic reticulum. Subunit assembly is accompanied by structural rearrangements involving proteolysis and disulfide-bond formation prior to deposition in protein storage vacuoles. The A. thaliana cv. Columbia genome contains four cruciferin loci, two of which, on the basis of cDNA analysis, give rise to three alternatively spliced variants. Using MS, we confirmed the presence of four variants encoded by genes At4g28520.1, At5g44120.3, At1g03880.1 and At1g3890.1 in A. thaliana seeds. Two-dimensional gel electrophoresis, along with immunological detection using anti-cruciferin antiserum and antibodies against phosphorylated amino acid residues, revealed that cruciferin was the major phosphorylated protein in Arabidopsis seeds and that polymorphism far exceeded that predicted on the basis of known isoforms. The latter may be attributed, at least in part, to phosphorylation site heterogeneity. A total of 20 phosphorylation sites, comprising nine serine, eight threonine and three tyrosine residues, were identified by MS. Most of these are located on the IE (interchain disulfide-containing) face of the globulin trimer, which is involved in hexamer formation. The implications of these findings for cruciferin processing, assembly and mobilization are discussed. In addition, the protein phosphatase 2C-impaired mutant, abi1-1, was found to exhibit increased levels of cruciferin phosphorylation, suggesting either that cruciferin may be an in vivo target for this enzyme or that abi1-1 regulates the protein kinase/phosphatase system required for cruciferin phosphorylation
    corecore