162 research outputs found

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    Novel Cardiac-Specific Biomarkers and the Cardiovascular Continuum

    Get PDF
    The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 25–30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying developing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the early transient phase of pathology progression where none of the existing markers aid diagnosis

    Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    Get PDF
    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer

    Molecular Engineering of Conjugated Polymers for Efficient Hole Transport and Defect Passivation in Perovskite Solar Cells

    Get PDF
    Organic-inorganic hybrid perovskite solar cells represent an exceptional candidate for nextgeneration photovoltaic technology. However, the presence of surface defects in perovskite crystals limits the performance as well as the stability of perovskite solar cells. We have employed a series of carbazole and benzothiadiazole (BT) based donor-acceptor copolymers, which have different lengths of alkoxy side-chains grafted on the BT unit, as the dopant-free hole transport materials (HTMs) for perovskite solar cells. We demonstrate that although these side-chains can reduce the π−π stacking structural order of these copolymers to affect the hole transport properties, the methoxy unit introduces a desired defect passivation effect. Compared to the Spiro-OMeTAD-based device, the copolymer with methoxy side-chains on the BT unit (namely PCDTBT1) as the HTM achieved superior power conversion efficiency and stability due to efficient hole transport and the suppression of trap-induced degradation, whilst the copolymer with octyloxy side-chains on the BT unit (namely PCDTBT8) as the HTM lead to poor performance and stability

    Safety and on-treatment efficacy of telaprevir: the early access programme for patients with advanced hepatitis C

    Get PDF
    Background and aim Severe adverse events (AEs) compromise the outcome of direct antiviral agent-based treatment in patients with advanced liver fibrosis due to HCV infection. HEP3002 is an ongoing multinational programme to evaluate safety and efficacy of telaprevir (TVR) plus pegylated-interferon-alpha (PEG-IFN alpha) and ribavirin (RBV) in patients with advanced liver fibrosis caused by HCV genotype 1 (HCV-1).Methods 1782 patients with HCV-1 and bridging fibrosis or compensated cirrhosis were prospectively recruited from 16 countries worldwide, and treated with 12 weeks of TVR plus PEG-IFN/RBV, followed by 12 or 36 weeks of PEG-IFN and RBV (PR) alone dependent on virological response to treatment and previous response type.Results 1587 patients completed 12 weeks of triple therapy and 4 weeks of PR tail (53% cirrhosis, 22% HCV-1a). By week 12, HCV RNA was undetectable in 85% of naives, 88% of relapsers, 80% of partial responders and 72% of null responders. Overall, 931 patients (59%) developed grade 1-4 anaemia (grade 3/4 in 31%), 630 (40%) dose reduced RBV, 332 (21%) received erythropoietin and 157 (10%) were transfused. Age and female gender were the strongest predictors of anaemia. 64 patients (4%) developed a grade 3/4 rash. Discontinuation of TVR due to AEs was necessary in 193 patients (12%). Seven patients died (0.4%, six had cirrhosis).Conclusions in compensated patients with advanced fibrosis due to HCV-1, triple therapy with TVR led to satisfactory rates of safety, tolerability and on-treatment virological response with adequate managements of AEs.Janssen PharmaceuticsUniv Milan, Div Gastroenterol, Dept Med, Fdn IRCCS Ca Granda Osped Maggiore Policlin, Milan, ItalyHosp Univ 12 Octubre, Secc Aparato Digest, Madrid, SpainIM Sechenov First Moscow State Med Univ, EM Tareev Clin Nephrol Internal & Occupat Med, Moscow, RussiaUniversidade Federal de São Paulo, Viral Hepatitis Div Infect Dis, Outpatient Clin HIV, São Paulo, BrazilUniv Sydney, Royal Prince Alfred Hosp, AW Morrow Gastroenterol & Liver Ctr, Sydney, NSW 2006, AustraliaCharles Univ Prague, Fac Med 1, Dept Internal Med, Prague, Czech RepublicCent Mil Hosp Prague, Prague, Czech RepublicUniv Libre Brussels, Dept Gastroenterol Hepatopancreatol & Digest Onco, Erasme Univ Hosp, Liver Unit, Brussels, BelgiumCarol Davila Univ Med & Pharm, Natl Inst Infect Dis, Bucharest, RomaniaJanssen Pharmaceut, B-2340 Beerse, BelgiumJanssen Pharmaceut, Paris, FranceJanssen Res & Dev, Titusville, NJ USAJanssen Res & Dev, High Wycombe, Bucks, EnglandJanssen Cilag AG, Zug, SwitzerlandHannover Med Sch, D-30623 Hannover, GermanyUniversidade Federal de São Paulo, Viral Hepatitis Div Infect Dis, Outpatient Clin HIV, São Paulo, BrazilWeb of Scienc

    Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination

    Get PDF
    © 2017 Elsevier Ltd Fabricating ternary solar cells (TSCs) is a promising strategy to improve the power conversion efficiency of organic photovoltaics without introducing sophisticated processing procedures. We report in this work high efficiency TSCs with the maximum PCE over 11% by introducing a medium band gap conjugated polymer PCDTBT8 into the PffBT4T-2OD:PC 71 BM binary photovoltaic system. Morphological investigation shows that the third component PCDTBT8 locates at the interface between PffBT4T-2OD and PC 71 BM without disrupting the crystallization of PffBT4T-2OD to maintain decent charge mobility, and loosens the fullerene aggregation networks to facilitate exciton dissociation. The efficient Förster energy transfer from PCDTBT8 to PffBT4T-2OD enables the ternary devices to retain a high short-circuit current density despite the slightly decreased light absorption. Device physics studies suggest that the addition of PCDTBT8 can enhance the built-in voltage, prolong the carrier lifetime, reduce the defect density and suppress the trap-assisted charge recombination, leading to an improved FF and V OC to enhance the efficiency of ternary devices

    Mechanisms controlling anaemia in Trypanosoma congolense infected mice.

    Get PDF
    Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection

    A Comprehensive Genetic Analysis of Candidate Genes Regulating Response to Trypanosoma congolense Infection in Mice

    Get PDF
    About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana”—a disease caused by Trypanosoma parasites similar to those that cause human “Sleeping Sickness.” Laboratory mice can also be infected by trypanosomes, and different mouse breeds show varying levels of susceptibility to infection, similar to what is seen between different breeds of cattle. Survival time after infection is controlled by the underlying genetics of the mouse breed, and previous studies have localised three genomic regions that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been called Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3) are well defined, but nevertheless still contain over one thousand genes, any number of which may be influencing survival. This study has aimed to identify the specific differences associated with genes that are controlling mouse survival after T. congolense infection. We have applied a series of analyses to existing datasets, and combined them with novel sequencing, and other genetic data to create short lists of genes that share polymorphisms across susceptible mouse breeds, including two promising “candidate genes”: Pram1 at Tir1 and Cd244 at Tir3. These genes can now be tested to confirm their effect on response to trypanosome infection

    Translation of mouse model to human gives insights into periodontitis etiology

    Get PDF
    To suggest candidate genes involved in periodontitis, we combined gene expression data of periodontal biopsies from Collaborative Cross (CC) mouse lines, with previous reported quantitative trait loci (QTL) in mouse and with human genome-wide association studies (GWAS) associated with periodontitis. Periodontal samples from two susceptible, two resistant and two lines that showed bone formation after periodontal infection were collected during infection and naïve status. Differential expressed genes (DEGs) were analyzed in a case-control and case-only design. After infection, eleven protein-coding genes were significantly stronger expressed in resistant CC lines compared to susceptible ones. Of these, the most upregulated genes were MMP20 (P = 0.001), RSPO4 (P = 0.032), CALB1 (P = 1.06×10-4), and AMTN (P = 0.05). In addition, human orthologous of candidate genes were tested for their association in a case-controls samples of aggressive (AgP) and chronic (CP) periodontitis (5,095 cases, 9,908 controls). In this analysis, variants at two loci, TTLL11/PTGS1 (rs9695213, P = 5.77×10-5) and RNASE2 (rs2771342, P = 2.84×10-5) suggested association with both AgP and CP. In the association analysis with AgP only, the most significant associations were located at the HLA loci HLA-DQH1 (rs9271850, P = 2.52×10-14) and HLA-DPA1 (rs17214512, P = 5.14×10-5). This study demonstrates the utility of the CC RIL populations as a suitable model to investigate the mechanism of periodontal disease

    Erratum to: Status and access to the Collaborative Cross population (Mammalian Genome (2012) 23, (706-712) DOI: 10.1007/s00335-012-9410-6)

    Get PDF
    The Collaborative Cross (CC) is a panel of recombinant inbred lines derived from eight genetically diverse laboratory inbred strains. Recently, the genetic architecture of the CC population was reported based on the genotype of a single male per line, and other publications reported incompletely inbred CC mice that have been used to map a variety of traits. The three breeding sites, in the US, Israel, and Australia, are actively collaborating to accelerate the inbreeding process through marker-assisted inbreeding and to expedite community access of CC lines deemed to have reached defined thresholds of inbreeding. Plans are now being developed to provide access to this novel genetic reference population through distribution centers. Here we provide a description of the distribution efforts by the University of North Carolina Systems Genetics Core, Tel Aviv University, Israel and the University of Western Australia
    corecore