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Abstract  

Fabricating ternary solar cells (TSCs) is a promising strategy to improve the power conversion 

efficiency of organic photovoltaics without introducing sophisticated processing procedures. We 

report in this work high efficiency TSCs with the maximum PCE over 11% by introducing a 

medium band gap conjugated polymer PCDTBT8 into the PffBT4T-2OD:PC71BM binary 

photovoltaic system. Morphological investigation shows that the third component PCDTBT8 

locates at the interface between PffBT4T-2OD and PC71BM without disrupting the crystallization of 

PffBT4T-2OD to maintain decent charge mobility, and loosens the fullerene aggregation networks 

to facilitate exciton dissociation. The efficient Förster energy transfer from PCDTBT8 to 

PffBT4T-2OD enables the ternary devices to retain a high short-circuit current despite the slightly 

decreased light absorption. Device physics studies suggest that the addition of PCDTBT8 can 

enhance the built-in voltage, prolong the carrier lifetime, reduce the defect density and suppress the 

trap-assisted charge recombination, leading to an improved FF and VOC to enhance the efficiency of 

ternary devices.  
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1. Introduction 

    Efforts from the synthesis of new small-bandgap polymers1,2, morphological control3,4, 

interfacial engineering5,6 and device architectural design7,8 have driven a steady progress of 

polymer solar cells (PSCs) with the maximum power conversion efficiency (PCE) now approaching 

14%9. For the fullerene-based PSCs, empirical experience has led current studies to focus on the use 

of narrow bandgap conjugated polymers to obtain high JSC values, and electron-donors with deep 

HOMO energy levels to get a high VOC. However, a sizeable challenge must be overcome in order 

to further push forward the efficiency limit of PSCs, which is the trade-off between the highest 

short-circuit current (JSC) and open-circuit voltage (VOC) that can be simultaneously achieved by 

incorporating a singular photovoltaic blend in a single junction device, as a result of thermalization 

losses and the Shockley-Queisser efficiency limit10.  

Although connecting two operational sub-devices with complementary absorption ranges in 

series to build a tandem device is a smart way to enhance the light absorption, it is complicated to 

assemble and the costly fabrication process hinders the large-scale production.11 In contrast, 

fabricating ternary solar cells (TSCs) is a promising strategy to broaden the absorption spectrum 

without introducing sophisticated processing procedures. Recently, several research efforts aimed at 

increasing the PCE of TSCs by introducing a third component to either broaden light harvesting12,13, 

encourage energy14 and charge transfer15, optimize morphology16,17 or achieve a thick active 

layer18,19, have led to a notable PCE of 14% in TSCs20. To design TSCs with improved efficiency 

over their binary counterparts, a few criteria need to be met for a positive impact. Firstly, the third 

component need to have some miscibility with the primary components, so it can locate either in the 

primary donor or acceptor phases, at the donor/acceptor interface, or form new alloys21. Secondly, 

rational energy or charge transfer to a component that has more efficient charge dissociation or 

transport ability would improve the device performance 22 . Multi-length scale (hierarchical) 

morphology with the coexistence of big and small domains have been found in a large number of 

fullerene and non-fullerene PSCs, and achieving a high average purity and highly ordered packing 

at the smallest length scale have been found to facilitate efficient exciton splitting and charge 

transport.23,24,25 Admittedly, some ternary PSC systems also suffer from the trade-off between fill 

factor (FF), JSC and VOC. Although some high performing TSCs have ben realized with increased FF 

and JSC, their VOC have been pinned to the smaller VOC of the corresponding binary blends26.  
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Compared to other narrow bandgap polymers, 

poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3’’’di(2-octyldodecyl) 2, 2’;5’,2’’;5’’,2’’’ 

-quaterthiophen-5,5’’’-diyl)] (PffBT4T-2OD) is a crystallizable polymer that has high hole mobility 

with strong temperature-dependent aggregation behavior, which can be manipulated to form an 

ideal polymer:fullerene morphology with highly crystalline and small polymer domains27,28. This 

has enabled high JSC and FF values to be achieved even in thick PffBT4T-2OD:PC71BM films of 

300 nm, with a PCE over 10%. Although previous works have reported that PffBT4T-2OD can be 

selected as a second electron donor to facilitate ideal morphology to improve the PCE of TSCs29,30, 

TSCs with PffBT4T-2OD as the host electron donor to take advantage of its favorable photovoltaic 

properties to achieve even higher PCEs have so far not been reported in the literature.  

In this study, we introduce a medium bandgap polymer, namely poly[9-(heptadecan-9-yl) 

-9H-carbazole-2,7-diyl-alt-(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)-5,5-

diyl] (PCDTBT8), as the third component into the binary PffBT4T-2OD:PC71BM photovoltaic 

system to prepare TSCs. The highest occupied molecular orbital (HOMO) energy level of 

PCDTBT8 is lower than that of PffBT4T-2OD (see Figure 1c) 31, so it has the potential to increase 

the Voc of TSCs. The molecular packing in PCDTBT8 won’t be changed at a relatively high 

thermal-annealing temperature around 100 oC, therefore the necessary hot annealing procedure of 

PffBT4T-2OD:PC71BM system shall not introduce any negative impacts to the device performance 

of TSCs. Our results show that the Förster energy transfer from PCDTBT8 to PffBT4T-2OD makes 

the ternary devices retain high short-circuit currents despite a slight decrease of light absorption of 

the ternary blends. The good miscibility of PCDTBT8 with PC71BM and its location at the interface 

between PffBT4T-2OD and PC71BM facilitate excellent exciton dissociation and charge transfer 

characteristics in the ternary blend. Furthermore, device physics investigations suggest that the 

addition of PCDTBT8 can enhance the built-in voltage, prolong the carrier lifetime, reduce the 

defect density, and suppress the trap-assisted monomolecular recombination. As a result, the ternary 

device with the addition of 15 wt.% PCDTBT8 achieved a high PCE of 11.2% with a VOC of 0.79 V, 

JSC of 18.8 mA cm-2 and FF of 74.7%.  
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2. Results and discussion 

 

Figure 1 (a) Device architecture of the ternary PSCs. (b) The chemical structures and (c) energy 

levels of PffBT4T-2OD, PCDTBT8 and PC71BM.  

 All devices in this work were fabricated in an inverted configuration of 

ITO/TiO2/PffBT4T-2OD:PCDTBT8:PC71BM/MoO3/Ag (see Figure 1). Figures 1b and c show the 

chemical structures and energy levels of PCDTBT8, PffBT4T-2OD and PC71BM29,32. The HOMO 

energy level of PCDTBT8 is −5.40 eV, which is deeper than that of PffBT4T-2OD at −5.34 eV, 

therefore the incorporation of PCDTBT8 has the potential to improve the VOC of our TSCs. 

PffBT4T-2OD is a crystalline polymer29, whilst PCDTBT8 is amorphous33. Figure 2 shows the 

transmission electron microscopy (TEM) of PffBT4T-2OD:PC71BM, PCDTBT8:PC71BM and 

PffBT4T-2OD:PCDTBT8:PC71BM films. The dark and bright regions represent the fullerene and 

polymer domains respectively due to their different electron densities34. It can be seen from Figure 

2a and b that the PffBT4T-2OD:PC71BM blend film consists of fibril-like textured domains that we 

identify as the semi-crystalline polymer PffBT4T-2OD, whilst PCDTBT8:PC71BM exhibits a 

homogeneous distribution of donor and acceptor. With the introduction of PCDTBT8 into the 

PffBT4T-2OD:PC71BM host blend, the fibril-like textures are retained which is favorable for carrier 
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transfer, although in these ternary blends the fibrils coalesced together to have slightly larger but 

more continuous polymer (bright) and fullerene (dark) domains (see Figure 2c-e).  

 

Figure 2 TEM images of the binary and ternary films. (a) PffBT4T-2OD:PC71BM (1:1.2). (b) 

PCDTBT8:PC71BM (1:4). PffBT4T-2OD:PCDTBT8:PC71BM ternary films with the blending ratios 

of (c) 0.95:0.05:1.2, (d) 0.85:0.15:1.2 and (e) 0.7:0.3:1.2. (f) Surface energies of 

PCDTBT8:PC71BM and PCDTBT8:PffBT4T-2OD binary blend films with the presence of different 

amounts of PCDTBT8. 

We have attempted to identify the location of PCDTBT8 within the ternary photovoltaic blends 

via a surface energy analysis approach, where the localization of the third component in a ternary 

blend can be inferred from the interfacial surface energy and wetting coefficient of the third 

component35. The surface energies of pure PffBT4T-2OD, PC71BM and their blend films with the 

presence of different amounts of PCDTBT8 were estimated from the water contact angle (WCA) 

measurements and are summarized in Table S1. The surface energy of PCDTBT8 (ȖPCDTBT8 = 21.6 

mJ cm-2) was observed to be between those of PffBT4T-2OD (ȖPffBT4T-2OD = 18.5 mJ cm-2) and 

PC71BM (ȖPC71BM = 35.5 mJ cm-2). As reported in previous work36, the closeness of the surface 

energy values of the electron-donating polymers ensures good miscibility in ternary systems. Figure 
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2f shows the surface energies of PffBT4T-2OD and PC71BM films blended with various contents of 

PCDTBT8. We found that the surface energy ȖPC71BM:PCDTBT8 decreased whilst the surface energy 

ȖPffBT4T-2OD:PCDTBT8 increased monotonically with the addition of PCDTBT8. The interfacial surface 

energies between different materials within the ternary blend were calculated using equation 1 in 

the supporting information and are summarized in Table S2. The wetting coefficient of PCDTBT8 

in PffBT4T-2OD:PC71BM was calculated to be 0.6 using equation 2 in the supporting information, 

this value is less than unit and has been concluded to indicate that PCDTBT8 primarily locates at 

the interface between PffBT4T-2OD and PC71BM domains37.  

We have further qualified the crystallization of PffBT4T-2OD and the domain changes of the 

ternary TSCs via grazing incidence small-angle X-ray scattering (GISAXS). The 2D GISAXS 

patterns of the binary PffBT4T-2OD:PC71BM blend film and ternary films with 5, 15 and 30 wt. % 

of PCDTBT8 are shown in Figure 3 a-d. The broad q range of our GISAXS setup also allows the 

(100) lamellae diffraction ring in the out-of-plane direction to be displayed together with the 2D 

GISAXS patterns, whose appearance supports our earlier identification of the fibril-like texture to 

be the crystallizable PffBT4T-2OD component. The location of this (100) pattern is at qĬ0.28 Å-1 

from the 1D profile plotted in Figure 3e, and is consistent with previous reports [9,10]. The domain 

size of the polymer crystallites at (100) (D100) are calculated by Scherrer’s relation and shown in 

Table 138. It is clear that the intensity and full width at half maximum of the lamellae (100) 

diffraction peaks are unchanged, suggesting that the addition of PCDTBT8 did not alter the 

crystallinity of PffBT4T-2OD in the ternary system. Investigation of the  stacking peak of 

PffBT4T-2OD upon the addition of PCDTBT8 also suggests negligible modifications. Figure 3f 

plots the in-plane 1D profiles extracted at the specular beam position within the region qy = 0 ± 

0.002 Å−1. The profiles were fitted with a universal model (described in detail in the supporting 

information)39,40. The fitting parameters are summarized in Table 1, in which ȟ is the average 

correlation length of the PC71BM dispersed polymer-rich phase, Ș and D are the correlation length 

and fractal dimension of the fractal-like network of PC71BM, 2Rg is the product of Ș and D which 

represents the length of the clustered PC71BM domain. It should be noted that the PC71BM 

dispersed polymer-rich phase contains both crystalline and amorphous PffBT4T-2OD molecules 

with dispersed PC71BM particles. The binary PffBT4T-2OD:PC71BM film showed the smallest 

correlation length of the PC71BM dispersed polymer (43.4 nm) and clustered PC71BM (18.2 nm) 

domains, in line with literature work41,42. The fullerene-dispersed polymer domain size and 
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fullerene cluster size only show a minor increase with the addition of 5 and 15 wt. % PCDTBT8, as 

seen in Table 1, further demonstrating that PCDTBT8 did not significantly disrupt the morphology 

of the host blend. The domain size (D100) of the crystalline polymer was unchanged and the 

correlation length of the PC71BM dispersed polymer-rich phase (ȟ) increased with the addition of 

PCDTBT8, implying that the increased ȟ originates from the mixed PCDTBT8:fullerene fraction. 

Furthermore, with the incorporation of PCDTBT8, the fractal dimension of fullerene fractal 

networks decreased from 2.9 to 2.7 but the domain size extended from 17.8 to 22.3 nm, suggesting 

that the PCBM clusters became loose33. Based on the above morphological investigation of the TSC 

film, we schematically show the microstructure of the binary and ternary blends in Figure 3g and h. 

The PCDTBT8 component is largely located at the interface between PffBT4T-2OD and PC71BM 

domains, while its good miscibility with PC71BM allows it to diffuse into the PC71BM aggregation 

to dilute PCBM clusters, leading to a loosely-packed fullerene network. As reported in previous 

work, these loosely-packed fractal fullerene networks can extend to larger regions to facilitate 

exciton dissociation43.  
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Figure 3 2D GISAXS patterns of (a) PffBT4T-2OD:PC71BM, and its ternary blends with (b) 5, (c) 

15 and (d) 30 wt% PCDTBT8. (e) 1D GISAXS profiles along qz axis showing the (100) diffraction 

peak of PffBT4T-2OD. (f) 1D GISAXS profiles along qy axis. Schematic of the microstructure of 

the PffBT4T-2OD:PC71BM based (g) binary and (h) ternary blend films. 

 
Table 1 Fitting parameters of 1D GISAXS profiles of PffBT4T-2OD:PC71BM based binary and 
ternary films. 

 D100 [nm] ȟ[nm] Ș[nm] D 2Rg [nm] 
PffBT4T-2OD:PC71BM 15.7 43.4 7.5 3.0 17.8 

With 5% PCDTBT8 15.7 45.5 8.0 2.8 18.4 
With 15% PCDTBT8 15.7 47.4 8.5 2.8 20.3 
With 30% PCDTBT8 15.7 54.9 9.1 2.7 22.3 
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    The UV-Vis absorption spectra of PffBT4T-2OD:PC71BM binary and ternary films with 

different contents of PCDTBT8 are shown in Figure 4a. The addition of PCDTBT8 caused the 

absorption ability to decrease in the 550 to 700 nm range but increase in the 350 to 550 nm range, 

indicating that the introduced PCDTBT8 slightly reduces the amount of the absorbed photons and 

may lead to a reduced JSC in TSCs. Figure S1 shows the emission and absorption spectra of 

PffBT4T-2OD:PCDTBT8 binary and ternary film with different amount of PCDTBT8. It shows that 

the maximum absorption peaks of PffBT4T-2OD are located from 600 to 750 nm while, in contrast, 

this range contains the maximum PL emission peaks of PCDTBT8. These overlapped absorption 

and PL emission spectra can offer an efficient Förster-type energy transfer44,45 in the ternary blend. 

As shown in figure S1b, the PL intensity of PffBT4T-2OD gradually increases upon blending with 

PCDTBT8, whilst the PL of PCDTBT8 is quenched completely, implying efficient energy transfer 

from PCDTBT8 to PffBT4T-2OD46. The possibility of charge transfer between PffBT4T-2OD and 

PCDTBT8 was also investigated by measuring the J-V curves of PffBT4T-2OD:PCDTBT8 binary 

devices with varying blending ratios. As shown in Figure S2, it is apparent that the binary solar cells 

with 50% PffBT4T-2OD and 50% PCDTBT8 show a low JSC value between pure PffBT4T-2OD 

and pure PCDTBT8 solar cells, illustrating that the exciton dissociation at the 

PffBT4T-2OD/PCDTBT8 interface is negligible and therefore there is no effective charge transfer 

between them21. 

 

 
Figure 4 (a) The absorption spectra of PffBT4T-2OD:PC71BM blends with different amounts of 

PCDTBT8. (b) Champion J–V curves of ternary PSCs with different PCDTBT8 contents. The 

weight ratio of electron-donating polymers to PC71BM was fixed at 1:1.2. (c) Corresponding EQE 

spectra of the ternary PSCs.  
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Table 2 Summary of photovoltaic parameters of inverted ternary solar cells with different contents 

of PCDTBT8 under the illumination of AM 1.5G at 100 mW cm-2. The overall donors to PC71BM 

ratios were kept at 1:1.2. The data presented are the maximum values followed by average values 

and standard deviations in the parentheses, obtained from over 20 individual devices. 

Component Voc [V] Jsc  [mA cm-2] FF [%] PCE [%] 

PffBT4T-2OD:PC71BM 0.75 (0.75±0.01) 19.5 (19.2±0.3) 72.2 (71.8±0.6) 10.57 (10.3±0.12) 
With 5% PCDTBT8 0.76 (0.76±0.01) 19.2 (18.9±0.4) 74.3 (74.1±0.8) 10.89 (10.7±0.08) 
With 10% PCDTBT8 0.77 (0.77±0.01) 19.0 (18.5±0.4) 75.1 (74.9±1.1) 11.07 (10.9±0.08) 
With 15% PCDTBT8 0.79 (0.79±0.01) 18.8 (18.4±0.4) 74.7 (74.5±0.8) 11.17 (11.0±0.10) 
With 20% PCDTBT8 0.81 (0.81±0.01) 17.9 (17.5±0.5) 73.1 (72.2±1.3) 10.56 (10.4±0.07) 
With 30% PCDTBT8 0.82 (0.82±0.01) 16.2 (15.8±0.5) 67.1 (66.5±1.1) 9.10 (8.8±0.13) 

 

Figure 4b shows the current density versus voltage (J-V) characteristics. The photovoltaic 

parameters for TSCs are summarized in Table 2. The PffBT4T-2OD:PC71BM reference device 

exhibited a best PCE of 10.57%, with a Jsc of 19.5 mA cm-2, Voc of 0.75 V and FF of 72.2 %. The 

TSCS exhibited only a moderate decrease in Jsc with the increased PCDTBT8 content, maintaining 

83% even with 30 wt% PCDTBT8, despite the decreased absorption intensity detailed earlier. This 

may be ascribed to the energy transfer from PCDTBT8 to PffBT4T-2OD. Notably, the FF of the 

TSCs increased from 72.2 to 74.3 and 75.1 % when the weight ratio of PCDTBT8 is 5 and 15% 

respectively, signifying that the addition of PCDTBT8 may improve the charge mobility or reduce 

recombination. Additionally, the VOC of our TSCs continuously increased with the increasing 

content of PCDTBT8, in line with previous reports that the VOC of TSCs can be continuously tuned 

between the VOC values of corresponding binary solar cells47,48, instead of following the regular rule 

that VOC will usually be determined by the difference between the LUMO level of acceptor and the 

lower HOMO level of donors. As a result, TSCs with 15 wt. % PCDTBT8 achieved a maximum 

PCE of 11.2%, with the VOC of 0.79 V. On the contrary, although TSCs with 30 wt. % PCDTBT8 

can obtain a higher VOC of 0.82 V, their JSC and FF declined significantly, leading to a relatively low 

PCE of 9.1%. It should be noted that the optimized ratio of PffBT4T-2OD to PC71BM is 1:1.223, 

whilst the optimized ratio of PCDTBT8 to PC71BM is 1:427. We therefore fabricated TSCs with 

higher ratios of fullerene to polymer. The results are summarized in Table S4, showing that TSCs 

exhibit an increased FF and a decreased JSC with higher fullerene contents, causing little change in 

the PCE when the increase of fullerene loading is moderate, and reduced PCE at much higher 

fullerene loadings. The external quantum efficiency (EQE) curves are shown in Figure 4c, and the 
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integrated EQE values are consistent with JSC values, showing a slight decline with the addition of 

PCDTBT8. We have also fabricated a batch of TSC devices with a much larger active area of 8.5 

mm2, and the device metrics are summarized in Table S5. With the increased active layer area from 

2.12 to 8.5 mm2, the Jsc and FF values decreased slightly due to the increased series resistance 

whilst the Voc values remains essentially unchanged. Notably, an encouraging PCE of 10.5%, with 

a Voc of 0.80 V, Jsc of 18.3 mA cm−2 and FF of 71.7%, was achieved for the device adding 15% 

PCDTBT8, illustrating that PffBT4T-2OD based TSCs also has the potential to fabricate large-area 

devices. PffBT4T-2OD:PC71BM binary solar cells have been found to degrade quickly as a result of 

spinodal demixing of donors and acceptors in the solid state during operation.41 Our preliminary 

investigation found that the incorporation of PCDTBT8 slowed down the efficiency degradation 

rate of our TSCs by reducing the phase separation rate between donors and acceptors. We are 

performing morphological characterizations and plan to correlate morphological evolution with 

storage lifetime of those TSCs, and report details in a following-up report.   

To understand the influence of PCDTBT8 content on the photovoltaic parameters of TSCs, we 

have evaluated the exciton dissociation and carrier transport/recombination process. Figure 5a 

shows the photocurrent density (Jph) as a function of the effective voltage (Veff) of our TSCs. Here, 

Jph is defined as Jph = Jlight − Jdark, where Jlight and Jdark are the photocurrent densities under 

illumination and dark respectively, and Veff is defined as Veff = V0 − Va, where V0 is the voltage 

when Jph=0 and Va is the applied voltage. The Jph of all devices quickly saturates when Veff 

approaches 1 V, indicating that all generated electron-hole pairs are dissociated under this condition. 

As shown in Table S6, the saturated current density (Jsat) of TSCs exhibits only a slight decline from 

19.9 to 19.2 mA cm-2 with the incorporation of 15 wt. % PCDTBT8, suggesting that the generated 

excitons are nearly unaffected. P(E, T) is determined by normalizing Jph with respect to Jsat (Jph/Jsat). 

The P(E, T) of our TSCs with 0, 5, 15 and 30 wt. % of PCDTBT8 are 97.9%, 98.3%, 98.0% and 

94.3% respectively, which shows that the exciton dissociation can be enhanced with a moderate 

addition of PCDTBT8. Furthermore, the hole mobility was measured to investigate the charge 

transfer of these TSCs. Figure S3 and Table S6 show that although the hole mobilities of TSCs 

decreases with the addition of PCDTBT8 particularly at higher weight fractions, the TSCs with 5 

and 15 wt% PCDTBT8 can acquire a high hole mobility of about 10-2 cm2V-1S-1
, comparable to that 

of the binary device. The study of PCDTBT:PC71BM system has concluded that bimolecular 

recombination dominate the recombination process when the slope in Figure 5b is 1.01 (kT/q)49. 
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Instead, a signature of monomolecular or trap-assisted recombination will operate with an enhanced 

dependence of the open circuit on the light intensity (2kT/q). As shown in Figure 5b, slopes of 1.16, 

1.10, 1.06 and 1.05 kT/q were obtained for the PffBT4T-2OD:PC71BM binary and 

PffBT4T-2OD:PCDTBT8:PC71BM ternary blends with a blending ratio of 0.95:0.05:1.2, 

0.85:0.15:1.2, and 0.7:0.3:1.2 respectively. Indeed, bimolecular recombination dominate in all 

devices and the trap-assisted monomolecular recombination became weaker with the addition of 

PCDTBT8.Figure S3b shows the J-V curves of TSCs with different contents of PCDTBT8 under 

dark conditions. It can be seen that TSCs with 5 and 15 wt. % PCDTBT8 show a relatively low leak 

current compared to the PffBT4T-2OD:PC71BM device, illustrating that the incorporation of 

PCDTBT8 could prevent the current leakage to reduce carrier recombination. Whist their dark 

currents under the forward bias were almost unchanged with 5 and 15 wt. % PCDTBT8, suggesting 

that PCDTBT8 did not alter the series resistance of the host blend50. However, TSCs with 30 wt. % 

PCDTBT8 show a low current in the forward direction and high leakage current in the reverse 

direction, consistent with its poor FF and JSC. Overall, we can conclude that the enhanced FF in our 

TSCs comes from the enhanced exciton dissociation and reduced carrier recombination, instead of 

increased carrier transportation.  
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Figure 5 (a) Photocurrent density versus effective voltage curves. (b) VOC versus light intensity with 

the slope gradient indicated in brackets. (c) Nyquist plots of impedance spectra with an applied bias 

near VOC under 0.8 sun irradiation. Inset shows the equivalent circuit model to fit the impedance 

spectra. (d) The Mott-Schottky plot of solar cells measured at a probe frequency of 10 kHz.  

Alternating current impedance spectroscopy (IS) was performed to gain in-depth 

understanding of the charge transport and recombination processes. Figure 5c shows the 

corresponding Nyquist plots of the binary and ternary solar cells, measured at V=VOC under the 

illumination of 0.8 Sun and fitted using the equivalent circuit model shown in the inset of Figure 5c. 

The model contains a series resistance R1, coming mainly from the electrical contacts and the 

resistance of the electrodes, which remained almost constant in all devices (see Table S7). R2 and R3 

correspond to the transport and recombination resistances of the active layer, which could be used 

to evaluate the charge carrier transport and recombination processes.51 Values of R2 and R3 from 

this model fit show that the addition of PCDTBT8 will increase both the transport and 

recombination resistances of our TSCs, corresponding to the reduced charge transport mobility and 

suppressed recombination. The constant phase element (CPE) suggests non-ideal behavior of the 
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capacitor, and is defined by CPE-T and CPE-P 52 , representing the capacitance and an 

inhomogeneous constant respectively. If CPE-P equals 1, the CPE is identical to an ideal capacitor 

without the presence of any defects at the polymer:fullerene interface53. Our model fitting shows 

that the CPE-P of TSCs all increased towards unit with the addition of PCDTBT8, suggesting that 

the interface capacitance between our electron-donating polymer and electron-accepting fullerene 

becomes ideal with the introduction of PCDTBT8. Furthermore, the average carrier lifetime (Ĳ) in 

the active layer can be calculated from the equation: Ĳ=R3×CPE-T 54, and the Ĳ values are estimated 

to be 1.61, 2.10, 2.20 and 2.31 ȝs for devices with 0, 5, 15 and 30 wt% of PCDTBT8 respectively. A 

longer Ĳ is associated with a lower recombination rate and therefore the addition of PCDTBT8 

significantly suppressed the charge recombination in the ternary film. 

The VOC of PSCs is empirically determined from the separation between Fermi levels of holes 

(EFn) and Fermi levels of electrons (EFp) using the following equation: VOC=(EFn - EFp)/q 55. In 

order to explore the dramatic increase of VOC in our TSCs, capacitance-voltage (C-V) 

measurements were performed and devices were analyzed via the Mott-Schottky (MS) analysis56,57. 

Table S8 shows the built-in potential (VBI) and defect density (N) of our TSCs, which are calculated 

from the Mott-Schottky analysis detailed in the supporting information. The VBI of all the TSCs 

increased with increasing PCDTBT8 content, and the difference between VOC and VBI remained 

constant for all our TSCs at 0.11 V, indicating that the increased VBI is responsible for the enhanced 

VOC. In addition, previous work has illustrated that the density of defects dominates over variations 

in bandgap and will determine the final achievable VOC
58. As shown in Table S8 and Figure 6, the 

defect density of the TSCs decreased from 9.9x1014 for the binary device to 8.3x1014 cm-3 for the 

ternary device with 15 wt. % of PCDTBT8. When devices are under illumination, TSCs with a 

lower defect density will exhibit a larger energy shift than the TSCs with a higher defect density. 

This is due to fewer electronic states within the bandgap available to be occupied by 

photo-generated charges, and leads to a deeper downward shift with respect to the equilibrium 

Fermi level EF0 and thus a higher VOC is obtainable. 
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Figure 6 Energy diagrams of the (a) binary and (b) ternary blends under illumination indicating the 

electrically active states in the bandgap of both materials. The donor HOMO level will be displaced 

depending on the addition of PCDTBT8. The position of the equilibrium (dark) Fermi level is 

denoted EF0. The difference between the hole (EFp) and electron (EFn) Fermi Levels yields the 

open-circuit voltage. 

3. Conclusion 

In summary, we demonstrated that high performance ternary solar cells can be prepared by 

incorporating a medium band-gap polymer PCDTBT8 into a crystalline PffBT4T-2OD:PC71BM 

host blend. The third component PCDTBT8 was determined to locate at the interface between 

PffBT4T-2OD and PC71BM without disrupting the crystallization of the primary electron donor 

PffBT4T-2OD, maintaining good charge mobility, and was found to loosen the fullerene 

aggregation networks that lead to superior exciton dissociation. Despite the slightly reduced 

absorption of ternary devices, the JSC of ternary devices remains at around 83% even with 30 wt% 

of PCDTBT8, due to efficient energy transfer from PCDTBT8 to PffBT4T-2OD. Device physics 

studies support that the addition of PCDTBT8 can enhance the built-in voltage, prolong the carrier 

lifetime, reduce the defect density and suppress the trap-assisted charge recombination, leading to 

an improved FF and VOC. As a result, the ternary device with 15 wt. % PCDTBT8 exhibits a 

maximum PCE of 11.2% with a VOC of 0.79 V, a JSC of 18.8 mA cm-2 and FF of 74.7%. Our results 

suggest that suppressing charge recombination and reducing defect density in ternary blends is an 

effective approach to improve the performance of PSCs. 

4. Experimental Section 

4.1. Materials 



  16

PffBT4T-2OD and PC71BM were purchased from Solarmer Materials (Beijing) Inc. PCDTBT8 was 

synthesized in our previous work27,42. TiO2 nanoparticles were synthesized according to our 

previous report59. Unless otherwise stated, all chemicals and solvents were of reagent grade and 

used as received.  

4.2. Fabrication of ternary solar cells 

Solar cells were fabricated in inverted structures. The pre-patterned ITO-glass substrates (resistance 

ca. 15 Ωper square) were cleaned by sequential sonication in water, ethanol, and isopropyl alcohol 

for 10 minutes each, before drying at 100 oC on a hotplate. After ultraviolet/ozone treatment for 10 

min, 20 nm TiO2 films were cast from the TiO2 dispersion with the presence of 40 mol% titanium 

(diisopropoxide) bis(2,4-pentanedionate) (TIPD) by spin-coating at 3000 rpm, followed by thermal 

annealing at 150 oC for 30 minutes to convert TIPD to titanium oxide bis(2,4-pentanedionate) 

(TOPD). TOPD here acts as a binder among TiO2 nanoparticles to reduce morphological and 

energetic defects, and has been demonstrated as an efficient electron transport layer for organic and 

perovskite photovoltaics in our previous work60.  The TiO2 films were then transferred into an 

N2-filled glove box and irradiated for 10 min under a 254 nm UV light before rinsing with 

ethanolamine (EA) solution (1 wt. % in 2-methoxyethanol) at 3000 rpm. Active layer solutions were 

prepared in CB/DCB (1:1 volume ratio) with 3% of DIO (PffBT4T-2OD concentration: 9 mg mL−1). 

To completely dissolve the polymer, the active layer solution was stirred on a hot plate at 100 oC for 

at least 5 h. Before spin-coating, both the polymer solution and ITO substrate were preheated on a 

hot plate at Ĭ110 oC. Active layers were spin-coated from the warm polymer solution on the 

preheated substrate in an N2 glovebox at 800 rpm. The preheated substrates were transferred to the 

spin coater chuck and the film casting process was completed within 10 s. Then the device 

substrates were put in a vacuum chamber overnight (~12h). Finally, 10 nm MoO3 and 100 nm Ag 

were deposited onto the photoactive layer through shadow masks by thermal evaporation. All the 

devices were encapsulated with UV-curable epoxy glue and glass slides before taking out from the 

glove box for device testing. 

4.3. Characterization  

Film absorption spectra were measured using a UV-Visible spectrophotometer (HITACHI, Japan). 

Film thickness was measured using a spectroscopic ellipsometer (J. A. Woollam, USA). Water 

contact angle measurements were performed using a water contact angle measurement system 



  17

(Attension Theta Lite), and the surface energy was calculated using the equation of state. The 

surface morphologies of the active layers were characterized by transmission electron microscopy 

(TEM) (JEOL, Japan). Device J-V characterization was performed under AM 1.5G (100 mW cm−2) 

using a Newport 3A solar simulator in air at room temperature. The light intensity was calibrated 

using a standard silicon reference cell certified by the National Renewable Energy Laboratory 

(NREL, USA). J–V characteristics were recorded using J-V sweep software developed by Ossila 

Ltd. (UK) and a Keithley 2612B (USA) source meter unit. An aperture mask was placed over the 

devices to accurately define a testing area of 2.12 mm2 on each pixel and to eliminate the influence 

of stray and wave guided light. External quantum efficiency (EQE) was measured with a Zolix 

(China) EQE system equipped with a standard Si diode. Impedance measurements were performed 

on an XM-studio electrochemical workstation (Solartron, U.K.). Equivalent circuit simulations were 

conducted using the software package ZView 3.1 (Scribner Associate, Inc., USA). 

Photoluminescence (PL) was obtained using a PL microscopic spectrometer (Flex One, Zolix, 

China) with a 532 nm CW laser as the excitation source. Synchrotron grazing incidence small-angle 

X-ray scattering (GISAXS) measurements were conducted using the beamline BL16B1 at the 

Shanghai Synchrotron Radiation Facility in China.  
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