46 research outputs found

    Turning high-throughput structural biology into predictive inhibitor design

    Get PDF
    A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein–ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein–ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining parallel measurements of over 200 protein–ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry

    A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a spiral structure coated by an electron dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualised by high resolution freeze fracture scanning electron microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum infection contain a highly organised skeleton structure underlying a specialised region of membrane. We propose that the spiral and dense coat organise the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells

    Structure and function of circadian clock proteins and deuterium isotope effects in nucleic acid hydrogen bonds

    No full text
    Circadian oscillators or clocks are a widespread, endogenous class of oscillatory mechanisms that control the ~24h temporal pattern of diverse organism functions. In cyanobacteria this mechanism is formed by three proteins, KaiA, KaiB and KaiC. KaiA is shown here to be a two domain protein that directly interacts with KaiC and enhances the KaiC autokinase activity. The amino-terminal domain of KaiA can be structurally categorized as a pseudo-receiver, a class of proteins used in signaling cascades and activated by direct protein??protein interactions. The carboxy-terminal domain interacts directly with KaiC, is sufficient to enhance the KaiC autokinase activity in a manner similar to full-length KaiA, and adopts a unique, all α-helical dimeric fold. The structure of this domain raises interesting probabilities regarding the mode of KaiA??KaiC interaction. The two KaiA domains are shown to directly interact with each other, which suggests a possible mechanism of signal transfer from the amino to carboxy-terminal domain. Hydrogen bonds are of paramount importance in nucleic acid structure and function. Here we show that changes in the width and anharmonicity of vibrational potential energy wells of hydrogen bonded groups can be measured in nucleic acids and can possibly be correlated to structural properties, such as length. Deuterium/protium fractionation factors, which are sensitive to the vibrational potential well width, were measured for the imino sites of thymidine residues involved in A:T base pairs or free in solution, and a correlation was established between decreasing fractionation factors and increasing imino proton chemical shift, δH3. Similarly, a correlation was observed between δH3and deuterium isotope effects (DIE) on chemical shift of thymidine carbon atoms. Combined these results indicate that as hydrogen-bond strength increases the vibrational potential wells of imino protons widen with a corresponding increase in anharmonicity. However, trans-hydrogen bond DIE on carbon chemical shifts of A:T base-paired adenosine residues do not correlate with those measured on thymidine residues. We propose that this lack of correlation is due to DIE dependence on base-pair geometry, which is not easily measured by traditional NMR experiments

    Plasmodium Helical Interspersed Subtelomeric (PHIST) proteins, at the Center of Host Cell Remodeling

    No full text
    During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family

    Plasmodium Helical Interspersed Subtelomeric (PHIST) proteins, at the Center of Host Cell Remodeling

    No full text
    During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family

    Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism

    Get PDF
    In the cyanobacterium Synechococcus elongatus (PCC 7942) the proteins KaiA, KaiB, and KaiC are required for circadian clock function. We deduced a circadian clock function for KaiA from a combination of biochemical and structural data. Both KaiA and its isolated carboxyl-terminal domain (KaiA180C) stimulated KaiC autophosphorylation and facilitated attenuation of KaiC autophosphorylation by KaiB. An amino-terminal domain (KaiA135N) had no function in the autophosphorylation assay. NMR structure determination showed that KaiA135N is a pseudo-receiver domain. We propose that this pseudo-receiver is a timing input-device that regulates KaiA stimulation of KaiC autophosphorylation, which in turn is essential for circadian timekeeping

    The streptococcal binding site in the gelatin-binding domain of fibronectin is consistent with a non-linear arrangement of modules.

    Get PDF
    Fibronectin-binding proteins (FnBPs) of Staphylococcus aureus and Streptococcus pyogenes mediate invasion of human endothelial and epithelial cells in a process likely to aid the persistence and/or dissemination of infection. In addition to binding sites for the N-terminal domain (NTD) of fibronectin (Fn), a number of streptococcal FnBPs also contain an upstream region (UR) that is closely associated with an NTD-binding region; UR binds to the adjacent gelatin-binding domain (GBD) of Fn. Previously, UR was shown to be required for efficient streptococcal invasion of epithelial cells. Here we show, using a Streptococcus zooepidemicus FnBP, that the UR-binding site in GBD resides largely in the (8)F1(9)F1 module pair. We also show that UR inhibits binding of a peptide from the α1 chain of type I collagen to (8)F1(9)F1 and that UR binding to (8)F1 is likely to occur through anti-parallel β-zipper formation. Thus, we propose that streptococcal proteins that contain adjacent NTD- and GBD-binding sites form a highly unusual extended tandem β-zipper that spans the two domains and mediates high affinity binding to Fn through a large intermolecular interface. The proximity of the UR- and NTD-binding sequences in streptococcal FnBPs is consistent with a non-linear arrangement of modules in the tertiary structure of the GBD of Fn
    corecore