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A common challenge in drug design pertains to finding chemical modifications to
a ligand that increases its affinity to the target protein. An underutilized advance
is the increase in structural biology throughput, which has progressed from an
artisanal endeavor to a monthly throughput of hundreds of different ligands against
a protein in modern synchrotrons. However, the missing piece is a framework
that turns high-throughput crystallography data into predictive models for ligand
design. Here, we designed a simple machine learning approach that predicts protein–
ligand affinity from experimental structures of diverse ligands against a single protein
paired with biochemical measurements. Our key insight is using physics-based energy
descriptors to represent protein–ligand complexes and a learning-to-rank approach
that infers the relevant differences between binding modes. We ran a high-throughput
crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining
parallel measurements of over 200 protein–ligand complexes and their binding
activities. This allows us to design one-step library syntheses which improved the
potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and
nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach
successfully extends ligands to unexplored regions of the binding pocket, executing
large and fruitful moves in chemical space with simple chemistry.
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Predicting protein–ligand affinity is a longstanding challenge that underpins
computer-aided drug design. The challenge often lies in designing chemical modifications
which would significantly improve the potency of a weakly potent starting point
(hit-to-lead) or finding chemotypes that maintain potency while designing away other
liabilities (lead optimization). Established medicinal chemistry heuristics focus on making
interpretable and modest chemical changes, iteratively “morphing” the ligand to optimize
interactions and explore unknown binding pockets (1, 2). Significant acceleration can
be realized if this iterative process is replaced by methods which suggest large and
synthetically facile changes to the ligand to lead to a significant increase in potency,
motivating a computational approach to ligand design.

The plethora of computational methods in the literature can be organized in terms
of available information they make use of. Ligand-based approaches (Fig. 1A) derive
information only from the chemical identity of ligands which are binding to the protein
and focus on learning the relationship between the chemical structure of the ligand and its
activity. Such methods, however, are circumscribed by the problem of extrapolation: The
model cannot extrapolate to regions of the binding site which are not already explored
by molecules in the dataset, nor to unexplored interactions between novel chemotypes
and the binding site.

Structure-based approaches ameliorate this limitation by taking the protein structure
into account and explicitly model the protein–ligand interactions (Fig. 1B). However,
rigorous methods, such as free-energy perturbations (FEP) or alchemical free-energy
calculations, generally require substantial computational resources and are constrained by
the quality of the approximate forcefield (3–5). In practice, these approaches are typically
used to compute relative free-energy changes of small modifications to predefined
scaffolds (6, 7), as convergence time and error both increase with the size of change relative
to the starting ligand. To reduce computational cost, empirical scoring functions such
as docking (8–11) have been developed. While docking can identify hits from virtually
screening large libraries (12, 13), it is typically not used in ligand optimization as the
correlation between predicted and experimentally measured protein–ligand interaction
energy is often weak.
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Fig. 1. Overview of approaches used in computer-aided drug design. Conventional approaches predict the activity of ligands (A) by learning the relationships
between the molecular structure of a molecule and its activity or (B) through physics-based modeling using only the structure of the target and relying
on methods such as free-energy perturbation (FEP) calculations or molecular docking. (C) Here, we demonstrated a strategy that exploits high-throughput
crystallographic characterization of protein–ligand complexes to predict ligand affinity.

The rapid acceleration in the throughput of structural biology
unlocks a new source of data (Fig. 1C ). Historically, protein
structure determination was laborious; thus, on a particular
target, there were only a handful of cocrystallized ligands reported
in the literature. Although databases such as the Protein Data
Bank (14) could be mined to parametrize docking algorithms
(15, 16), this necessitates training on diverse classes of proteins
with varied protein–ligand affinity measurement techniques,
introducing noise and dataset bias (17). The synergy between
modern robotic techniques for crystallization and crystal soaking
(18), automated data analysis pipelines (19), and modern
synchrotron infrastructure has increased the monthly throughput
to up to hundreds of ligands against a target (20). However,
the missing piece of the puzzle is a framework that can turn
high-throughput crystallographic data into predictive models for
ligand design.

In this paper, we present a machine learning approach that
relates high-throughput crystallography data, represented as
empirical energy terms, to measured bioactivity. We used this to
accelerate the COVID Moonshot initiative (21), an open science
consortium that reported over 200 protein–ligand complexes
against SARS-CoV-2 main protease (MPro) with associated
potency (IC50) measurements. Retrospective validation shows
that our method outperforms ligand-based and structure-based
approaches. We prospectively designed one-step library synthe-

ses, improving the potency of two distinct micromolar hits by
over 10-fold and arrived at a lead compound with 120 nM
antiviral efficacy. Crucially, our designed inhibitors gain potency
by extending to unsampled regions of the binding site, illustrating
the ability of our model to generalize via the incorporating
physical interactions.

Results and Discussion

Energy-Based Model Is Generalizable Across Chemical Space.
To describe protein–ligand structures as a fixed-length vector
for downstream machine learning (Fig. 2A), we turn to the
literature on empirical scoring functions. We use the terms of
empirical energy function—hydrophobic, electrostatic, hydrogen
bonding, etc.—as descriptors of the structures. Our hypothesis
is that while empirical energy terms capture different aspects
of protein–ligand interactions, how these interactions stack up
to yield the free energy of binding depends on binding-site–
specific variables such as binding-site flexibility. We further
hypothesize that those protein-specific corrections are learnable
from our dataset, comprising high-throughput structural biology
data and associated bioactivity. To fix ideas, in our approach, we
featurize all the protein–ligand complexes using the Open Drug
Discovery Toolkit (ODDT) (22) and extract the Autodock Vina
descriptors to represent the structures (Fig. 2A). The terms of
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Fig. 2. Structure-based learning outperforms docking and ligand-based machine learning in relative affinity predictions. (A) To build a model that captures the
relationship between the crystal structure of a protein–ligand complex and the activity of the ligand, we extracted Autodock Vina descriptors from each crystal
structure and deployed it to predict the relative potency of ligands. (B) Comparison of this approach (green) with ligand-based learning (pink) and docking
(yellow) using data from the COVID Moonshot campaign and a classification task that evaluates pairwise comparisons between the activities of ligands using a
cutoff of 0.5 log10 units for classifying one compound as more active than another. The average auROC scores were computed using a scaffold split, with the
error bars corresponding to SE of the mean. Performance on individual scaffolds is shown in Dataset 4. (C) Time-split evaluation of our model. Our approach
maintains its predictive power when trained on older, less potent molecules and asked to rank the affinities of newer more potent molecules (green line). Error
bars correspond to SE of the mean. The black line tracks the potency of the most potent molecule discovered at that point.

the descriptor corresponded to affinity score, two Gaussian steric
interaction terms, a repulsion term, hydrophobic interactions,
and hydrogen interactions, as has been described in detail
elsewhere (23, 24). Instead of predicting IC50 values directly, we
focused our attention on a learn-to-rank approach that predicts
the pairwise comparison of the ligands, choosing a cutoff of
0.5 log10 units for classifying one compound as more active
than another (Fig. 2A). The threshold was chosen to match
typical assay error. This approach allows us to combine qualitative
(potency below measurable) and quantitative measurements and
forces the model to ignore irrelevant experimental noise by
ensuring that it is ranking only structures with demonstrably
different bioactivity (25).

Specifically, we applied this approach to the high-throughput
structural biology campaign against the SARS-CoV-2 MPro, an
essential protein in viral replication and a validated target for
anticoronavirus therapeutics (26–29). All MPro clinical candi-
dates to date are peptidomimetics inhibiting via a covalent
mechanism, which are generally suboptimal for drug develop-
ment. We launched the COVID Moonshot, an open science
initiative aiming to develop noncovalent small-molecule oral
antiviral (21). The campaign obtained 236 structures of noncova-

lent inhibitors binding to the MPro. Of these ligands, 94 had IC50
below 50 μM. To the best of our knowledge, COVID Moonshot
is the only openly accessible dataset with over 100 structures of
different ligands against a single target with associated bioactivity
measurement; as such, our model evaluation will focus on this
dataset.

To implement the models and evaluate their performance in
ranking novel ligands, we use a scaffold-split approach where an
entire scaffold is held out from training and placed in the test set
(SI Appendix, Fig. S1). There are four salient chemical scaffolds in
the dataset: aminopyridine-like, isoquinoline, benzotriazole, and
quinolone (Materials and Methods and SI Appendix, Fig. S2) with
123, 44, 19, and 15 structures, respectively. For the compounds
in the left-out test set, the features were extracted from docked
structures (the ligands had been docked to the active site using
OpenEye’s FRED hybrid docking mode as implemented in
the “Classic OEDocking” floe on the Orion online platform;
Materials and Methods) instead of the experimental crystal
structures. This is because when deploying the model as a
prioritization tool for synthesis and screening as we will do later
in this work, experimental structural information is inaccessible,
and the docked structure serves as its approximation. To find
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a well-performing model architecture, we explored a variety of
traditional machine learning models (logistic regression, k-nearest
neighbors, extra tree, and random forest) and performed a
hyperparameter search for all (Materials and Methods). We found
an optimized random forest-based architecture to show good
performance across all of the chemical series both when the
area under the receiver operating characteristic curve (auROC;
Dataset 1) or the area under the precision-recall curve (auPRC;
Dataset 2) was used as the performance metric. The high
performance values both globally as well as for each of the
chemical series separately illustrate that our approaches have
the potential to accurately rank unseen ligands without the
requirement to have any structures from that specific scaffold
as part of the training set.

Structural Data Are Salient to Model Performance. To under-
stand the impact of experimental structural biology data, we
consider two alternative models: i) a ligand-based model that
relied only on the use of ligand-based descriptors providing
no information about the protein-crystal structure and ii) a
model that used a docked structure instead of the measured
crystallographic structure. Specifically, for the former case, we
featurized the ligands using Morgan fingerprints (30), imple-
mented through the use of the RDKit package. For the latter
case, we docked ligands to the active site using OpenEye’s FRED
hybrid docking modes described above. For consistency, the same
model architecture (random forest) was used for all cases with the
hyperparameters tuned separately for each model.

Fig. 2B shows that our approach which incorporates exper-
imental structural data outperforms both docking-based and
ligand-based models, highlighting the importance of high-
throughput structural biology. The auROC values correspond
to the average values across the four chemical series. The elevated
performance of the docking-based model over the ligand-based
one likely stems from the fact that the model does not rely solely
on ligand-based input but also incorporates information about
the protein–ligand interactions.

Finally, with access to both experimentally determined and
docked structures of the protein–ligand complexes, we set out
to examine in more detail how the accuracy of the docking
step affects model performance. To this effect, we first noted
that the docked and experimental structures differed on average
by around 1.5 Å as quantified by heavy atom root mean
squared displacement (RMSD; SI Appendix, Fig. S3), with there
being no significant difference between the four chemical series
(P < 0.01 using the Mann–Whitney test). We then trained
models identically to the docking-based learning approach but
constrained training data to these docked structures that closely
matched the real experimental structures as quantified by the
RMSD values. We found the performance to decline when a
larger mismatch between the two types of data was allowed
(SI Appendix, Fig. S4), in particular for the aminopyridine
series, which was the worst performing chemical series when
all data were included (Dataset 4). In parallel, we noticed
that performance was generally best when the validation data
were restricted to cases where there was a good match between
docked and crystal structures (SI Appendix, Fig. S5). Taken
together, these results suggest that good agreement between
the experimental and the docked structures helps to ensure
good predictive capabilities, likely because fully energy-driven
approaches, such as docking, aim to be generic and have thus
limited capability to generalize effectively to every target. The
integration of real protein-specific data, in this case, through

crystallographic protein–ligand structures, enables the model
to learn protein-specific information in parallel with global
interactions. The results further suggest that pose prediction and
energy prediction should be considered as dual tasks, and an
approach that combines high-throughput crystallography with a
high-throughput biological assay can supply both sources of data
to train docking scoring function.

Pretraining on Larger Protein–Ligand Complex Datasets Does
Not Increase Performance But Improves the Robustness of
the Predictions. With the size of the experimental data here
being modest (around 200 crystal structures with parallel activity
measurements), we next set out to investigate whether the pre-
dictive power of the structure-driven modeling strategy increases
even further by first pretraining a model on a larger dataset
of experimentally determined protein–ligand structures and
then fine-tuning the model to our data. Such transfer-learning
approaches are actively pursued in the context of a variety of areas
from image processing to speech recognition, natural language
processing, and protein function prediction (31). Specifically,
in the context of protein–ligand binding, fine-tuning has been
shown to increase performance on specific protein families after
having first trained a universal protein–ligand binding prediction
model (32). To evaluate possible gains for our task, we turned to
the latest version (v2020) of the PDBBind (33) and its refined
dataset that had filtered all the protein–ligand complexes in the
PDB Database with parallel activity measurements down to a
set of 5318 complexes with well-resolved structures and good-
quality measurements on the binding data as described in detail
by Liu et al. (34).

We used the ODDT package (22) to extract the descriptors
for all of the structures and, similarly to before, trained a model
that would learn to rank the structures based on the relative
activity of the ligands. Specifically, we compared three cases:
i) our previously found top-performing model (random forest),
ii) a freshly initialized neural network, and iii) a neural network
pretrained on PDBBind (Fig. 3). To compare the approaches
reliably, we performed 15 different runs and calculated the
average performance across these. Our results suggested that the

Fig. 3. Effect of pretraining on PDBBind on model performance. Area under
the receiver–operator characteristic curve (auROC) when learning the relative
binding affinities of ligands to a SARS-CoV-2 main protease using a ran-
dom forest-based architecture (blue), a neural network-based architecture
(yellow), and by using PDBBind to train a model before fine-tuning it (green).
The error bars correspond to the SD in the auROC value across 15 different
runs. Fine-tuning improves robustness compared to a freshly initialized
neural network, but global performance remains below what was achieved
with a random forest-based architecture.
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freshly initialized neural network, on average, did not outperform
the random forest-based architecture, which is likely a direct effect
of it being challenging to train highly generalizable deep learning
networks in a low-data regime. Pretraining on PDBBind followed
by fine-tuning to our data also did not result in a model that would
outperform the random forest-based approach, but it did allow us
to substantially reduce the variability in performance compared
to a case where a similar neural network-based architecture was
initialized freshly.

Model Maintains Performance Throughout the Campaign.
Having demonstrated that our proposed strategy can reliably rank
ligands by potency even when outside the chemical space that it
encountered during training (i.e., for a new scaffold), we next
explore how its utility varies through the campaign and what is
the amount of structural data required for efficient performance.
As a drug discovery campaign progresses, more knowledge about
the chemical attributes that determine the binding of a ligand
to its target is gathered, and the designs are honed accordingly.
Therefore, trying to predict the potency of molecules tested earlier
in the campaign with molecules tested later in the campaign as
the training set is much easier (and less useful) than the converse,
i.e., hindsight is usually much more accurate than foresight.

To examine the predictive capability of the structure-driven
ligand prioritization approach as the campaign progresses, we
use a time-split strategy. We ordered the compounds by the
time when they had been tested and used only the structures
available until that specific time point for training. We first
note that in the course of the campaign, the potency of the
molecules increased by many orders of magnitude (Fig. 2C ,
black line). To avoid susceptibility of the model to memorize the
specifics of a particular scaffold, we kept all aminopyridine-like
and isoquinoline-like molecules in the training data while using
benzotriazole-like and quinolone-like ligands for validation.
Fig. 2C (green line) shows that our structure-based model
remains predictive when trained on molecules tested early in
the campaign and deployed to rank molecules tested later.
This is in contrast to the model that relied on ligand-based or
docking-based input (Fig. 2C , pink and dark yellow lines).

Finally, from these data, we can interrogate that our proposed
approach performs effectively (auROC value above 0.7) when
only around 100 crystal structures are available to train the model.
Crucially, this is a throughput that could be achieved in a modern
synchrotron (20) on a monthly timescale, illustrating that our
proposed strategy has the potential to be exploited routinely in
the context of drug discovery campaigns.

Model-Guided Library Synthesis Discovers Potent Leads. To
apply our model to lead discovery, we need to generate protein–
ligand structures for unseen ligands. Starting from two hits
with an amine handle reported by the COVID Moonshot
Consortium (35), chosen because they have detectable potency
and ease of synthetic access, we generate a virtual library that
is synthesizable in a single reaction step using amide formation
(Fig. 4A) and reductive amination (Fig. 4B). The library design
is motivated by structural data, aiming to extend the hit into
the unoccupied P1’ binding pocket (Fig. 4, Top Right). Using
the Manifold platform (postera.ai/manifold), we select carboxylic
acid and aldehydes that are in-stock building blocks in Enamine
(a synthetic chemistry CRO with one of the largest building block
collections onsite) with the building blocks further filter based on
predicted reactivity and the final compound having clog P < 3.

In total, there are 15,720 compounds in the amide virtual library
and 2,664 compounds in the reductive amination library.

We then generated a predicted binding pose by constrained
docking into the binding site using existing structural data in the
isoquinoline series as the constraints (Materials and Methods) and
used our trained structure-based learn-to-rank model to rank
the ligands in this virtual library. We used a random forest-
based model trained on the full dataset with hyperparameters
fixed to the set that was found to work best across all the four
chemical series (Fig. 2B; { nestimators = 100, max_depth = 3,
max_features = 100, min_samples_leaf = 2}. Specifically, each
of the docked poses is ranked against the top 5 most potent
noncovalent binders in the dataset (SI Appendix, Fig. S6) and
the mean of the five predictions estimated to generate the
final ranking. Top 18 compounds from the final ranking were
selected from the amide formation library with 15 successfully
synthesized and top 32 from the reductive amination library with
25 successfully synthesized. We have included all the chemical
structures in Dataset 5. This 80% success rate in synthesis could
be improved on by considering reaction yield as part of the library
design, which could be done using a mechanistic descriptor (36)
or building block-based reactivity score (37).

The successfully synthesized 40 compounds were then assessed
for inhibition of Mpro activity using a biochemical assay with a
fluorescence-based readout (25, 35) (Dataset 6). Fig. 4 A and B
shows that around 30% of the library has potency that is that
greater than 2x compared to the reference. These compounds
are all substantial changes to the hit, in some cases doubling the
atom count, and reaching the ligand into unknown regions of the
binding site while remaining a low logP. The high hit rate suggests
that the model can accurately prioritize these chemotypes. The
inclusion of more and less potent compounds from this round
of testing could be integrated with the training data in the next
iteration to further improve the predictive capabilities of the
model.

Finally, we characterized the most potent leads in vitro and
in cells after having resolved the enantiomers/diastereoisomers.
Fig. 5A shows that our top enantiopure compound, com-
pound 1, achieved nM potency in the florescence Mpro assay.
Compound 1 was further profiled in the SARS-CoV-2 antiviral
assay (CPE assay in Vero E6 cells; Fig. 5B), attaining EC50 =
120 nM. Compound 1 displayed no cytotoxicity effect against
Vero E6 cells at 10 μM. We experimentally determined the
structure of its protein–ligand complex, confirming that the hit
compound reaches into P1’ pocket (Fig. 5 C and D). Table 1
summarizes the in vitro ADME properties of compound 1,
showing that it is largely unbound in plasma; it exhibits excellent
in vitro metabolic stability in human and rat but suffers from
poor permeability. Compound 1 is a potential starting point for
the development of antiviral therapeutics.

Conclusion

With the crystal structures of protein–ligand complexes being
acquired at an increasing throughput, here, we show how these
data can be used to power an approach to computational ligand
design by using physics-inspired empirical energy terms as a
descriptor of the protein–ligand complex. We focus on the
COVID Moonshot Initiative, which reported an unprecedent-
edly rich dataset of 200 ligands for which both their activity
and structure of binding to the main protease of SARS-CoV-2
had been determined. We developed a machine learning model
that learned the relationship between the multidimensional
docking score extracted from the crystal structure and the
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Fig. 4. Structure-enabled machine learning identified multiple, more potent ligands in a small number of synthesized compounds. We applied the model to
design a reductive amination library (A) and amidation library (B), which is screened against the main protease inhibition using a fluorescence assay. The library
is designed to extend into the untapped P1’ binding pocket of the active site. The structure shown is Mpro-x11498 from Diamond/XChem (35).

relative bioactivity of ligands. The approach maintained a high
and robust performance (auROC of 0.79), even when making
predictions outside the training scaffold. It also yielded powerful
results in a prospective campaign, increasing the potency of

hit compounds by more than 10x with simple chemistry that
extends the hits to an unsampled region of the binding site. Our
approach arrived at a lead compound with 120 nM antiviral
efficacy.
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Fig. 5. Lead compounds are starting points for antiviral development. (A) Top hits reported in Fig. 4 are purified and assayed in an enzymatic assay for their
activity against the SARS-CoV-2 main protease. The 90% CI for enzymatic assays of compound 1 [0.26, 0.42] μM, compound 2 [0.98, 1.2] μM, and compound 3
[1.4, 1.6] μM; for viral assay: [0.019, 0.83] μM. (B) Compound 1, with nM potency, is further profiled in the SARS-CoV-2 CPE assay in Vero E6 cells and found to show
no cytotoxic effect at 10 μM. (C) Crystallographic structure of compound 1 bound to Mpro (structure P1477_0A) (35) and (D) 2D map of salient protein–ligand
interactions obtained using OpenEye.

Materials and Methods

Dividing the Molecules by Chemical Series. In order to reliably estimate the
performance of our developed model, we performed the train:test splits in a
scaffold-stratified manner. To this effect, four distinct scaffold categories were
defined—aminopyridine-like, isoquinoline, benzotriazole, and quinolone—and
each compound was classified as belonging to one of them by using SMARTS
to define chemical substructures. SI Appendix, Fig. S5 shows representative
examples of each chemical series, highlighting with the chemical substructure
that gives rise to the name.

Model Development. All models explored in this paper utilized a learn-to-
rank approach where the data were divided into a training set and a test set

with compounds from the chemical series always kept in the same group.
After this split, all possible pairs between compounds in each of the two sets
were generated. For each pair, the difference in their pIC50 value as well
as between the descriptors evaluated as has been illustrated in SI Appendix,
Fig. S1. Compounds that were determined to be inactive were included when
forming pairs, and they were all allocated activities equal to the highest measured
activity values.

To find optimally performing models, extra tree classifier, random forest,
k-nearest neighbors, and neural network-based architectures were consid-
ered. All the models were trained using the scikit-learn package (38), and
the list of hyperparameters considered for each architecture are shown
in Dataset 3. The optimal set of hyperparameters for each model was
arrived to be monitoring the average auROC value across the four chemical
series.
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Table 1. Compound 1 exhibits promising in vitro ADME
properties
Summary of biochemical and ADME properties of 1

IC50 (μ M) 0.34
EC50 (VeroE6, SARS-CoV-2) (μ M) 0.12
Cytotoxicity CC50 (VeroE6) (μ M) >10
log D 0.90
PPB (human, rat) 68.5%, 58.7%
MDCK-MDR1 Papp A-to-B (10−6 cm/s) 0.20
MDCK-MDR1 Papp B-to-A (10−6 cm/s) 0.60
MDCK-LE Papp A-to-B (10−6 cm/s) 0.30
Liver hepatocytes CLint (human, rat) (μg/min/106 cells) 4.40, 4.00
Liver hepatocytes t1/2 (human, rat) (min) 158, 172
Liver microsome CLint (human, rat) (μl/min/mg) <10.0, <10.0
Liver microsome t1/2 (human, rat) (min) >139, >139

The table shows the measured lipophilicity, plasma protein binding, permeability, and
metabolic stability of the compound.

Pretraining on PDBBind. The PDBBind (33) refined dataset, v2020; 5318
structures; construction described by Liu et al. (34) was used to train a
learn-to-rank predictor linking the activity of a ligand to the descriptors extracted
from the corresponding protein–ligand complex structure. We trained networks
of multiple linear layers with the Relu activation function using Adam optimizer
and dropout regularization at each layer. The model hyperparameters (number of
layers, dimensions of the layers, the learning rate, and the dropout probability)
were chosen via the hyperband algorithm (a variation of random parameter
searching) on a random 3% of the data. After training on the data for 20 epochs,
the final linear layer of the neural network was reinitialized for fine-tuning on
the SARS-CoV-2 data, while the weight parameters for other layers were kept
fixed. The impact of transfer learning was evaluated by making a copy of the
model and completely reinitialized the model weights before fitting directly to
the SARS-CoV-2 data.

Docking Experiments. We redocked all compounds synthesized by The COVID
Moonshot Consoritium against x2908 structure reported by Diamond XChem.
We use the “Classic OEDocking” floe v0.7.2 as implemented in the Orion
2020.3.1 Academic Stack (OpenEye Scientific). Omega was used to enumerate
conformations (and expand stereochemistry) with up to 500 conformations.
FRED was used for docking in HYBRID mode using the x2908 bound ligand. The
docked poses are available on GitHub.

Fluorescence MPro Inhibition Assay. The method is described previously
(35). Compounds were seeded into assay-ready plates (Greiner 384 low volume,
cat 784900) using an Echo 555 acoustic dispenser, and DMSO was back-filled
for a uniform concentration in assay plates (DMSO concentration maximum 1%).
Screening assays were performed in duplicate at 20 μM and 50 μM. Hits of
greater than 50% inhibition at 50 μM were confirmed by dose–response assays.
Dose–response assays were performed in 12-point dilutions of 2-fold, typically
beginning at 100 μM. Highly active compounds were repeated in a similar
fashion at lower concentrations beginning at 10 μM or 1 μM. Reagents for the
Mpro assay were dispensed into the assay plate in 10-μl volumes for a final
volume of 20 μM.

Final reaction concentrations were 20 mM HEPES pH7.3, 1.0 mM TCEP,
50 mM NaCl, 0.01% Tween-20, 10% glycerol, 5 nM Mpro, and 375 nM
fluorogenic peptide substrate [5-FAM]-AVLQSGFR-[Lys(Dabcyl)]-K-amide. Mpro
was preincubated for 15 min at room temperature with the compound before
the addition of the substrate and a further 30-min incubation. Protease
reaction was measured in a BMG Pherastar FS with a 480/520 ex/em filter
set. Raw data were mapped and normalized to high (Protease with DMSO)
and low (No Protease) controls using Genedata Screener software. Normalized
data were then uploaded to CDD Vault (Collaborative Drug Discovery). Dose–
response curves were generated for IC50 using nonlinear regression with the
Levenberg–Marquardt algorithm with minimum inhibition = 0% and maximum
inhibition = 100%.

SARS-CoV-2 Antiviral Assay. The method is described previously (35). SARS-
CoV-2 (GISAID accession EPI_ISL_406862) was kindly provided by Bundeswehr

Institute of Microbiology, Munich, Germany. Virus stocks were propagated
(4 passages) and tittered on Vero E6 cells. Handling and working with SARS-CoV-2
virus were conducted in a BSL3 facility in accordance with the biosafety guidelines
of the Israel Institute for Biological Research (IIBR). Vero E6 cells were plated in 96-
well plates and treated with compounds in medium containing 2% fetal bovine
serum. The assay plates containing compound dilutions and cells were incubated
for 1 h at a temperature of 37 ◦C temperature prior to adding multiplicity of
infection (MOI) 0.01 of viruses. Viruses were added to the entire place. This
included control wells that included the virus but not the test compound
or the Remdesivir drug used as positive control. After 72-h incubation, the
viral cytopathic effect (CPE) inhibition assay was measured with XTT reagent.
Three replicate plates were used. We note that compounds were assayed as
enantiomers or diastereoisomers in this initial triage.

Chemical Synthesis. All compounds were purchased from Enamine and are
available in their catalog without any restriction/exclusivity. Enamine catalog
ID of the compounds assayed and a description of the synthesis protocol as
provided by Enamine are provided in SI Appendix.

In Vitro ADME Assays. All assays were provided as in-kind contributions by
Novartis International AG to the COVID Moonshot Consortium and summarized
in (35).

Data, Materials, and Software Availability. Source code and data required
to reproduce this study are available at https://github.com/kadiliissaar/ligand_
design_structural_biology.
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