27 research outputs found

    Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: effects of replacement of dietary fish oil with vegetable oils

    Get PDF
    The present study compared the effects of diets formulated with reduced fishmeal (FM) content and either 100% fish oil (FO) or 100% of a vegetable oil (VO) blend in post-smolts of three family groups of Atlantic salmon. Two groups were selected as being either “Lean” or “Fat” based on estimated breeding values (EBV) for flesh adiposity of their parents derived from a breeding programme, while the third group (CAL) was a mix of non-pedigreed commercial families unrelated to the two groups above. The VO blend comprised rapeseed, palm and a new product, Camelina oil in a ratio of 5/3/2, and diets were fed to duplicate pens of each salmon group. After an ongrowing period of 55 weeks, to reach a mean weight of 3kg, the fish from all treatments were switched to a decontaminated FO for a further 24 weeks to follow restoration of long-chain n-3 polyunsaturated fatty acids (LC-PUFA) in the fish previously fed VO. Final weights were significantly affected by family group and there was also an interaction between diet and group with Fat and Lean FO fish being larger than the same fish fed VO. Specific growth rate (SGR) was highest in CAL fish (1.01), feed conversion ratio (FCR) was highest in the Lean fish but there were no significant effects on thermal growth coefficient (TGC). Condition Factor (CF) was lowest in CAL fish while the hepato-somatic index (HSI) was highest in Lean fish and viscero-somatic index (VSI) highest in Fat fish. Flesh and viscera lipid content was affected by both family group and diet with a significant interaction between the two. Flesh lipid in fish fed FO was in the order Fat > CAL > Lean although this order was Fat = Lean > CAL when fed VO. Flesh fatty acid compositions were affected mainly by diet although some minor fatty acids were also influenced by group. Fish fed VO had n-3 LC-PUFA reduced by ~65% compared to fish fed FO but this could be restored by a 16 week FO finishing diet phase. The differences observed in lipid and fatty acid deposition suggested that genetics affected lipid deposition and metabolism and that breeding programmes could select for fish that retained more n-3 LC-PUFA in their flesh, particularly when fed diets low in these fatty acids

    Seasonal changes of commercial traits, proximate and fatty acid compositions of the scallop Flexopecten glaber from the Mediterranean Sea (Southern Italy)

    Get PDF
    This study provides information on biological (gonadosomatic index), commercial quality (condition index and meat yield) and biochemical aspects (proximate composition, fatty acids) of the soft tissues of Flexopecten glaber reared in suspended cages in the Ionian Sea. The results showed that condition index (CI) and meat yield (MY) peaked in December (60 and 30%, respectively) and in April, May and June (from 53 to 60% for CI and from 34 to 36% for MY). Gonadosomatic index showed three main peaks in winter, spring and summer months. Contents of protein 8.18–11.9 g/100 g), lipid (0,.78–1.18 g/100 g) and carbohydrate (1.19–3.30 g/100 g) varied significantly during the study period. Saturated fatty acids was the dominant group, except in December when polyunsaturated fatty acids showed the highest proportion (43% of total FAs). Fatty acids of the n3 group were dominant with docosahexaenoic and eicosapentaenoic acids. Highest n3/n6 ratios were recorded in spring-summer specimens, with values > of 5. The results showed a better nutritional quality of scallops in May, July and December

    Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.)

    Get PDF
    Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) are essential components of the diet of all vertebrates and. The major dietary source of n-3 LC-PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n-3 LC-PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild-type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO-fed fish (117 g) was slightly lower than that of FO- and DCO-fed fish (130 and 127 g, respectively). Inclusion of the GM-derived oils enhanced the n-3 LC-PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM-derived oils. This showed a similar pattern to that observed in WCO-fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM-derived oils could be suitable alternatives to dietary FO in sea bream

    Functional biscuits with PUFA-omega 3 from Isochrysis galbana

    No full text
    BACKGROUND: Sweet biscuits, a traditional and nutritious food, can be healthy and very attractive when redesigned to be prepared with the addition of a natural product, themicroalgal biomass of Isochrysis galbana.This marine microalga is recognised as a rich source of polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA; 20:5ω3), and is a promising ingredient in the food and feed industries. The importance of PUFA-ω3 (an alternative to fish oils) in food, and the need to increase the daily intake of these substances to promote a healthier lifestyle is now well known. RESULTS: Traditional butter biscuits were enriched with I. galbana biomass (1% and 3%) and evaluated in terms of colour, texture and fatty acid profile, within 3months of storage. I. galbana biscuits presented total levels of 100mg 100 g−1 and 320mg 100 g−1 of PUFA-ω3 (EPA + DPA (docosapentaenoic acid; 22:5ω3) + DHA (docosahexaenoic acid; 22:6ω3) for 1% and 3% I. galbana, respectively. CONCLUSION: The enhancement of texture properties, the high stability of colour and texture and the good profile of polyunsaturated fatty acids, with emphasis on EPA and DHA, of the biscuits obtained, reveal a new food market niche opportunity

    Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism

    No full text
    Duplicate groups of Atlantic salmon post-smolts were fed five practical-type diets in which the added lipid was 100% fish oil [FO; 0% rapeseed oil (0% RO)], 90% FO + 10% RO (10% RO), 75% FO + 25% RO (25% RO), 50% FO + 50% RO (50% RO) or 100% RO, for a period of 17 wk. There were no effects of diet on growth rate or feed conversion nor were any histopathological lesions found in liver, heart, muscle or kidney. The greatest accumulation of muscle lipid was in fish fed 0% RO, which corresponded to significantly lower muscle protein in this group. The highest lipid levels in liver were found in fish fed 100% RO. Fatty acid compositions of muscle lipid correlated with RO inclusion in that the proportions of 18:1(n-9), 18:2(n-6) and 18:3(n-3) all increased with increasing dietary RO (r = 0.98–1.00, P less than 0.013). The concentrations of eicosapentaenoic acid [20:5(n-3)] and docosahexaenoic acid [22:6(n-3)] in muscle lipid were significantly reduced (P less than 0.05), along with total saturated fatty acids, with increasing dietary RO. Diet-induced changes in liver fatty acid compositions were broadly similar to those in muscle. Hepatic fatty acid desaturation and elongation activities, measured using [1-14C] 18:3(n-3), were increased with increasing dietary RO. Limited supplies of marine fish oils require that substitutes be found if growth in aquaculture is to be maintained such that fish health and product quality are not compromised. Thus, RO can be used successfully as a substitute for fish oil in the culture of Atlantic salmon in sea water although at levels of RO greater than 50% of dietary lipid, substantial reductions occur in muscle 20:5(n-3), 22:6(n-3) and the (n-3)/(n-6) polyunsaturated fatty acid (PUFA) ratio, which will result in reduced availability of the (n-3) highly unsaturated fatty acids that are beneficial for human health
    corecore