237 research outputs found

    Lack of Teratological Effects in Rats Exposed to 20 or 60 kHz Magnetic Fields

    Get PDF
    BACKGROUND: A risk assessment of magnetic field (MF) exposure conducted by the World Health Organization indicated the need for biological studies on primary hazard identification and quantitative risk evaluation of intermediate frequency (300 Hz–100 kHz) MFs. Because induction heating cookers generate such MFs for cooking, reproductive and developmental effects are a concern due to the close proximity of the fields' source to a cook's abdomen. METHODS: Pregnant Crl:CD(SD) rats (25/group) were exposed to a 20 kHz, 0.2 mT(rms) or 60 kHz, 0.1 mT(rms) sinusoidal MF or sham-exposed for 22 hr/day during organogenesis, and their fetuses were examined for malformations on gestation day 20. All teratological evaluations were conducted in a blind fashion, and experiments were duplicated for each frequency to confirm consistency of experimental outcomes. RESULTS: No exposure-related changes were found in clinical signs, gross pathology, or number of implantation losses. The number of live fetuses and low-body-weight fetuses as well as the incidence of external, visceral, and skeletal malformations in the fetuses did not indicate significant differences between MF-exposed and sham-exposed groups. Although some fetuses showed isolated changes in sex ratio and skeletal variation and ossification, such changes were neither reproduced in duplicate experiments nor were they common to specific field frequencies. CONCLUSIONS: Exposure of rats to MFs during organogenesis did not show significant reproducible teratogenicity under experimental conditions. Present findings do not support the hypothesis that intermediate frequency MF exposure after implantation carries a significant risk for developing mammalian fetuses. Birth Defects Res (Part B) 92:469–477, 2011. © 2011 Wiley Periodicals, Inc

    Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain

    Full text link
    "This is the peer reviewed version of the following article: Ysasi, Gonzalo Gurrea, Vicente Blanca Giménez, Juan Carlos Moreno, and María Antonia Serrano. 2018. Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain. Photochemistry and Photobiology 94 (2). Wiley: 390 97. doi:10.1111/php.12865, which has been published in final form at https://doi.org/10.1111/php.12865. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Continuous exposures to ultraviolet radiation can lead to harmful effects on human skin. Professional drivers may spend more than 8 h per day inside a vehicle. This study describes an analysis of the UVER (erythemal ultraviolet radiation) received by a driver and passenger inside a vehicle. A three-door Peugeot 206 was used for the study. VioSpor Blue Line dosimeters (with a response profile close to that of human skin) were used to measure the erythematic dose of UV radiation (able to produce erythema on human skin). Four dosimeters were placed in the driver¿s position and another four in the passenger¿s position. Daily irradiance was analyzed for a day in April using PMA radiometers. The measurements were obtained on relatively clear days from February to December 2009 between 9:30 A.M. and 3 P.M. Additionally, a prediction was made of the time required to produce an erythema on the driver¿s skin. UVER exposure, in some of the driver¿s positions, exceeds the Exposure Limits given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Skin protection measures should be taken into account by professional drivers to prevent the harmful effects of UVER radiation.This work was carried out with financing from the Ministry of Economy and Competitiveness, Project CGL2010-15931/CLI, from the Generalitat Valenciana within the PROMETEO/2010/064 Project, and the Spanish Ministry of Science and Innovation, in the CGL200761813 Project.Gurrea-Ysasi, G.; Blanca Giménez, V.; Moreno, J.; Serrano, M. (2018). Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain. Photochemistry and Photobiology. 94(2):390-397. https://doi.org/10.1111/php.12865S390397942Ysasi, G. G., & Ribera, L. J. C. (2013). Analysis of Two Kinds of Tree as Physical Barriers Against Erythemal UVB Radiation Received. Photochemistry and Photobiology, 89(3), 724-729. doi:10.1111/php.12020Giménez, V. B., Ysasi, G. G., Moreno, J. C., & Serrano, M. A. (2015). Maximum Incident Erythemally Effective UV Exposure Received by Construction Workers, in Valencia, Spain. Photochemistry and Photobiology, 91(6), 1505-1509. doi:10.1111/php.12530Parisi, A. V., Sabburg, J., & Kimlin, M. G. (2004). Scattered and Filtered Solar UV Measurements. Advances in Global Change Research. doi:10.1007/978-94-015-1246-6Lavker, R. M., Gerberick, G. F., Veres, D., Irwin, C. J., & Kaidbey, K. H. (1995). Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. Journal of the American Academy of Dermatology, 32(1), 53-62. doi:10.1016/0190-9622(95)90184-1Lavker, R., & Kaidbey, K. (1997). The Spectral Dependence for UVA-Induced Cumulative Damage in Human Skin. Journal of Investigative Dermatology, 108(1), 17-21. doi:10.1111/1523-1747.ep12285613Lowe, N. J., Meyers, D. P., Wieder, J. M., Luftman, D., Borget, T., Lehman, M. D., … Scott, I. R. (1995). Low Doses of Repetitive Ultraviolet A Induce Morphologic Changes in Human Skin. Journal of Investigative Dermatology, 105(6), 739-743. doi:10.1111/1523-1747.ep12325517Serre, I., Cano, J. P., Picot, M.-C., Meynadier, J., & Meunier, L. (1997). Immunosuppression induced by acute solar-simulated ultraviolet exposure in humans: Prevention by a sunscreen with a sun protection factor of 15 and high UVA protection. Journal of the American Academy of Dermatology, 37(2), 187-194. doi:10.1016/s0190-9622(97)80123-5Reglamento (CE) 561/2006 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 15 de marzo de 2006GUIDELINES ON LIMITS OF EXPOSURE TO ULTRAVIOLET RADIATION OF WAVELENGTHS BETWEEN 180 nm AND 400 nm (INCOHERENT OPTICAL RADIATION). (2004). Health Physics, 87(2), 171-186. doi:10.1097/00004032-200408000-00006Commission Internationale de l'Eclairage 1999 Erythema Reference Action Spectrum and Standard Erythema dose. CIE S-007-1998Gies, P., & Wright, J. (2003). Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry¶. Photochemistry and Photobiology, 78(4), 342. doi:10.1562/0031-8655(2003)0782.0.co;2Moehrle, M., & Garbe, C. (2000). Personal UV Dosimetry by Bacillus subtilis Spore Films. Dermatology, 200(1), 1-5. doi:10.1159/000018306CEAM, Centro de Estudios Ambientales del MediterráneoDuarte, I., Rotter, A., Malvestiti, A., & Silva, M. (2009). The role of glass as a barrier against the transmission of ultraviolet radiation: an experimental study. Photodermatology, Photoimmunology & Photomedicine, 25(4), 181-184. doi:10.1111/j.1600-0781.2009.00434.

    Assessment of Biologically Effective Solar Ultraviolet Exposures for Court Staff and Competitors During a Major Australian Tennis Tournament

    Get PDF
    Sport is an integral and enduring part of many societies, such as Australia. Participation in outdoor sports, such as tennis, comes with a very real risk of dangerous solar ultraviolet exposure which can result in erythema (sunburn), serious conditions such as skin cancer, including melanoma, and eye conditions such as cataracts and pterygium. This study remotely assesses the effective ultraviolet exposures in response to the increased sun safety awareness at a major summertime tennis tournament in Australia. The assessment only uses publicly accessible data and information. It was found that tournament organizers have effectively adopted sun-safe protocols into the uniform policy that the court officials (judges and ball kids) are mandated to follow. The combination of sun-participant geometry and the photoprotection provided by uniforms significantly reduced the ambient ultraviolet exposure, which was recorded to be as high as 9.9 SED/h, to just 1.0 and 0.5 SED/h for ball kids and judges, respectively, compared to up to 2.0 SED/h for players. Even though caution is needed against complacency with sun safety, with the need for the court officials and the players to still apply sunscreen, the court officials provided persistent visual role modeling of sun-safe behaviors

    Feasibility of a cohort study on health risks caused by occupational exposure to radiofrequency electromagnetic fields

    Get PDF
    Breckenkamp J, Berg-Beckhoff G, Muenster E, et al. Feasibility of a cohort study on health risks caused by occupational exposure to radiofrequency electromagnetic fields. Environmental Health. 2009;8(1):23.Background: The aim of this study was to examine the feasibility of performing a cohort study on health risks from occupational exposure to radiofrequency electromagnetic fields (RF-EMF) in Germany. Methods: A set of criteria was developed to evaluate the feasibility of such a cohort study. The criteria aimed at conditions of exposure and exposure assessment (level, duration, preferably on an individual basis), the possibility to assemble a cohort and the feasibility of ascertaining various disease endpoints. Results: Twenty occupational settings with workers potentially exposed to RF-EMF and, in addition, a cohort of amateur radio operators were considered. Based on expert ratings, literature reviews and our set of predefined criteria, three of the cohorts were identified as promising for further evaluation: the personnel (technicians) of medium/short wave broadcasting stations, amateur radio operators, and workers on dielectric heat sealers. After further analyses, the cohort of workers on dielectric heat sealers seems not to be feasible due to the small number of exposed workers available and to the difficulty of assessing exposure (exposure depends heavily on the respective working process and mixture of exposures, e.g. plastic vapours), although exposure was highest in this occupational setting. The advantage of the cohort of amateur radio operators was the large number of persons it includes, while the advantage of the cohort of personnel working at broadcasting stations was the quality of retrospective exposure assessment. However, in the cohort of amateur radio operators the exposure assessment was limited, and the cohort of technicians was hampered by the small number of persons working in this profession. Conclusion: The majority of occupational groups exposed to RF-EMF are not practicable for setting up an occupational cohort study due to the small numbers of exposed subjects or due to exposure levels being only marginally higher than those of the general public

    Occupational UV exposure of environmental agents in Valencia, Spain

    Full text link
    The aim of this paper is to measure UV exposure of environmental agents in their occupational schedules in summer in Valencia province (Spain) using VioSpor personal dosimeters attached to several parts of their bodies. Due to its geographical situation, Valencia receives large UVR doses throughout the year, and the work of environmental agents is directly related to the protection, care, and custody of natural, often in mountainous areas. Comparison with the occupational UV exposure limit showed that the agents received an erythemal UV dose in excess of occupational guidelines, indicating that protective measures against this risk are highly advisable.The authors wish to thank the environmental agents of the Conselleria de Infraestructuras, Territorio y Medio Ambiente of the Generalitat Valenciana for their cooperation in this study. We also wish to thank the Head of the Conselleria for permitting the workers to take part. We are also grateful to the State Agency for Meteorology and the Generalitat Valenciana for providing us with access to their meteorological data. The data used in this work were originally acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The translation of this study was funded by the Universitat Politecnica de Valencia, Spain. The research was supported by the Spanish Ministry of Education and Science within Research Project CGL2010-15931 and by the Generalitat Valenciana within the PROMETEO/2010/064 Project.Serrano Jareño, MA.; Cañada, J.; Moreno Esteve, JC.; Gurrea Ysasi, G. (2014). Occupational UV exposure of environmental agents in Valencia, Spain. Photochemistry and Photobiology. 90:911-918. https://doi.org/10.1111/php.12252S91191890Juzeniene, A., Brekke, P., Dahlback, A., Andersson-Engels, S., Reichrath, J., Moan, K., … Moan, J. (2011). Solar radiation and human health. Reports on Progress in Physics, 74(6), 066701. doi:10.1088/0034-4885/74/6/066701Norval, M., Lucas, R. M., Cullen, A. P., de Gruijl, F. R., Longstreth, J., Takizawa, Y., & van der Leun, J. C. (2011). The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 199. doi:10.1039/c0pp90044cSklar, L. R., Almutawa, F., Lim, H. W., & Hamzavi, I. (2013). Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem. Photobiol. Sci., 12(1), 54-64. doi:10.1039/c2pp25152cGarbe, C., & Leiter, U. (2009). Melanoma epidemiology and trends. Clinics in Dermatology, 27(1), 3-9. doi:10.1016/j.clindermatol.2008.09.001Madan, V., Lear, J. T., & Szeimies, R.-M. (2010). Non-melanoma skin cancer. The Lancet, 375(9715), 673-685. doi:10.1016/s0140-6736(09)61196-xLomas, A., Leonardi‐Bee, J., & Bath‐Hextall, F. (2012). A systematic review of worldwide incidence of nonmelanoma skin cancer. British Journal of Dermatology, 166(5), 1069-1080. doi:10.1111/j.1365-2133.2012.10830.xArnold , M. C. Holterhues L. M. Hollestein J. W. W. Coebergh T. Nijsten E. Pukkala B. Holleczek L. Tryggvad_ottir H. Comber M. J. Bento C. H. S. Diba R. Micallef M. Primic_Zakelj M. I. Izarzugaza J. Perucha R. Marcos-Gragera J. Galceran E. Ardanaz R. Schaffar A. Pring E. de Vries 2013 Trends in incidence and predictions of cutaneous melanoma across Europe up to 2015 10.1111/jdv.12236Erdmann, F., Lortet-Tieulent, J., Schüz, J., Zeeb, H., Greinert, R., Breitbart, E. W., & Bray, F. (2012). International trends in the incidence of malignant melanoma 1953-2008-are recent generations at higher or lower risk? International Journal of Cancer, 132(2), 385-400. doi:10.1002/ijc.27616Ferlay , J. H. R. Shin F. Bray D. Forman C. Mathers D. M. Parkin 2010 GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet] International Agency for Research on Cancer Lyon, France http://globocan.iarc.frHousman, T. S., Feldman, S. R., Williford, P. M., Fleischer, A. B., Goldman, N. D., Acostamadiedo, J. M., & Chen, G. J. (2003). Skin cancer is among the most costly of all cancers to treat for the Medicare population. Journal of the American Academy of Dermatology, 48(3), 425-429. doi:10.1067/mjd.2003.186De Vries, E., van de Poll-Franse, L. V., Louwman, W. J., de Gruijl, F. R., & Coebergh, J. W. W. (2005). Predictions of skin cancer incidence in the Netherlands up to 2015. British Journal of Dermatology, 152(3), 481-488. doi:10.1111/j.1365-2133.2005.06386.xCáncer en cifras Centro Nacional de Epidemiología Instituto de Salud Carlos III http://193.146.50.130/morta/grafs.php#grafsDe Vries, E., Bray, F. I., Coebergh, J. W. W., & Parkin, D. M. (2003). Changing epidemiology of malignant cutaneous melanoma in Europe 1953-1997: Rising trends in incidence and mortality but recent stabilizations in Western Europe and decreases in Scandinavia. International Journal of Cancer, 107(1), 119-126. doi:10.1002/ijc.11360Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W. W., Comber, H., … Bray, F. (2013). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. European Journal of Cancer, 49(6), 1374-1403. doi:10.1016/j.ejca.2012.12.027European Detailed Mortality Database World Health Organization Regional Office for Europe http://data.euro.who.int/hfamdb/De Gruijl, F. R. (2011). Sufficient Vitamin D from Casual Sun Exposure? Photochemistry and Photobiology, 87(3), 598-601. doi:10.1111/j.1751-1097.2011.00918.xWebb, A. R., Kift, R., Berry, J. L., & Rhodes, L. E. (2011). The Vitamin D Debate: Translating Controlled Experiments into Reality for Human Sun Exposure Times. Photochemistry and Photobiology, 87(3), 741-745. doi:10.1111/j.1751-1097.2011.00898.xJohn, E. M., Koo, J., & Schwartz, G. G. (2007). Sun Exposure and Prostate Cancer Risk: Evidence for a Protective Effect of Early-Life Exposure. Cancer Epidemiology Biomarkers & Prevention, 16(6), 1283-1286. doi:10.1158/1055-9965.epi-06-1053Grant, W. B. (2010). Relation between prediagnostic serum 25-hydroxyvitamin D level and incidence of breast, colorectal, and other cancers. Journal of Photochemistry and Photobiology B: Biology, 101(2), 130-136. doi:10.1016/j.jphotobiol.2010.04.008Kampman, M. T., & Steffensen, L. H. (2010). The role of vitamin D in multiple sclerosis. Journal of Photochemistry and Photobiology B: Biology, 101(2), 137-141. doi:10.1016/j.jphotobiol.2010.04.003Zittermann, A., & Gummert, J. F. (2010). Sun, vitamin D, and cardiovascular disease. Journal of Photochemistry and Photobiology B: Biology, 101(2), 124-129. doi:10.1016/j.jphotobiol.2010.01.006EUROMELANOMA Campaign 2012 http://www.euromelanoma.org/spain/home-1Stratigos, A. J., Forsea, A. M., van der Leest, R. J. T., de Vries, E., Nagore, E., Bulliard, J.-L., … del Marmol, V. (2012). Euromelanoma: a dermatology-led European campaign against nonmelanoma skin cancer and cutaneous melanoma. Past, present and future. British Journal of Dermatology, 167, 99-104. doi:10.1111/j.1365-2133.2012.11092.xCAREX project http://www.esf.org/research-areas/space-sciences/activities/carex-project.htmlGies, P., & Wright, J. (2003). Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry¶. Photochemistry and Photobiology, 78(4), 342. doi:10.1562/0031-8655(2003)0782.0.co;2Moehrle, M., Dennenmoser, B., & Garbe, C. (2003). Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. International Journal of Cancer, 103(6), 775-778. doi:10.1002/ijc.10884Thieden, E., Collins, S. M., Philipsen, P. A., Murphy, G. M., & Wulf, H. C. (2005). Ultraviolet exposure patterns of Irish and Danish gardeners during work and leisure. British Journal of Dermatology, 153(4), 795-801. doi:10.1111/j.1365-2133.2005.06797.xGlanz, K., Buller, D. B., & Saraiya, M. (2007). Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations. Environmental Health, 6(1). doi:10.1186/1476-069x-6-22Milon, A., Sottas, P.-E., Bulliard, J.-L., & Vernez, D. (2006). Effective exposure to solar UV in building workers: influence of local and individual factors. Journal of Exposure Science & Environmental Epidemiology, 17(1), 58-68. doi:10.1038/sj.jes.7500521Siani, A. M., Casale, G. R., Diémoz, H., Agnesod, G., Kimlin, M. G., Lang, C. A., & Colosimo, A. (2008). Personal UV exposure in high albedo alpine sites. Atmospheric Chemistry and Physics, 8(14), 3749-3760. doi:10.5194/acp-8-3749-2008Gies, P., Watzl, R., Javorniczky, J., Roy, C., Henderson, S., Ayton, J., & Kingston, M. (2009). Measurement of the UVR Exposures of Expeditioners on Antarctic Resupply Voyages. Photochemistry and Photobiology, 85(6), 1485-1490. doi:10.1111/j.1751-1097.2009.00602.xHammond, V., Reeder, A. I., & Gray, A. (2009). Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand. Public Health, 123(2), 182-187. doi:10.1016/j.puhe.2008.12.007Serrano, M. A., Cañada, J., & Moreno, J. C. (2009). Erythemal Ultraviolet Exposure in Two Groups of Outdoor Workers in Valencia, Spain. Photochemistry and Photobiology, 85(6), 1468-1473. doi:10.1111/j.1751-1097.2009.00609.xSchmalwieser, A. W., Cabaj, A., Schauberger, G., Rohn, H., Maier, B., & Maier, H. (2010). Facial Solar UV Exposure of Austrian Farmers During Occupation. Photochemistry and Photobiology, 86(6), 1404-1413. doi:10.1111/j.1751-1097.2010.00812.xSiani, A. M., Casale, G. R., Sisto, R., Colosimo, A., Lang, C. A., & Kimlin, M. G. (2011). Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy). Photochemistry and Photobiology, 87(4), 925-934. doi:10.1111/j.1751-1097.2011.00934.xHåkansson, N., Floderus, B., Gustavsson, P., Feychting, M., & Hallin, N. (2001). Occupational Sunlight Exposure and Cancer Incidence among Swedish Construction Workers. Epidemiology, 12(5), 552-557. doi:10.1097/00001648-200109000-00015Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Picconi, O., Boyle, P., & Melchi, C. F. (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45-60. doi:10.1016/j.ejca.2004.10.016Radespiel-Tröger, M., Meyer, M., Pfahlberg, A., Lausen, B., Uter, W., & Gefeller, O. (2008). Outdoor work and skin cancer incidence: a registry-based study in Bavaria. International Archives of Occupational and Environmental Health, 82(3), 357-363. doi:10.1007/s00420-008-0342-0Kenborg, L., Jørgensen, A. D., Budtz-Jørgensen, E., Knudsen, L. E., & Hansen, J. (2010). Occupational exposure to the sun and risk of skin and lip cancer among male wage earners in Denmark: a population-based case–control study. Cancer Causes & Control, 21(8), 1347-1355. doi:10.1007/s10552-010-9562-1Lichte, V., Dennenmoser, B., Dietz, K., Häfner, H.-M., Schlagenhauff, B., Garbe, C., … Moehrle, M. (2009). Professional risk for skin cancer development in male mountain guides - a cross-sectional study. Journal of the European Academy of Dermatology and Venereology, 24(7), 797-804. doi:10.1111/j.1468-3083.2009.03528.xDiepgen, T. L., Fartasch, M., Drexler, H., & Schmitt, J. (2012). Occupational skin cancer induced by ultraviolet radiation and its prevention. British Journal of Dermatology, 167, 76-84. doi:10.1111/j.1365-2133.2012.11090.xSchmitt, J., Seidler, A., Diepgen, T. L., & Bauer, A. (2011). Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. British Journal of Dermatology, 164(2), 291-307. doi:10.1111/j.1365-2133.2010.10118.xDe Vries, E., Trakatelli, M., Kalabalikis, D., Ferrandiz, L., Ruiz-de-Casas, A., … Moreno-Ramirez, D. (2012). Known and potential new risk factors for skin cancer in European populations: a multicentre case-control study. British Journal of Dermatology, 167, 1-13. doi:10.1111/j.1365-2133.2012.11081.xSchmitt, J., Diepgen, T., & Bauer, A. (2010). Berufliche Exposition gegenüber natürlicher UV-Strahlung und nicht-melanozytärer Hautkrebs - ein systematischer Review zur Frage einer neuen Berufskrankheit. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 8(4), 250-264. doi:10.1111/j.1610-0387.2009.07260_supp.xBlumthaler, M., Ambach, W., & Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology B: Biology, 39(2), 130-134. doi:10.1016/s1011-1344(96)00018-8Aceituno-Madera, P., Buendía-Eisman, A., Olmo, F. J., Jiménez-Moleón, J. J., & Serrano-Ortega, S. (2011). Melanoma, altitud y radiación UVB. Actas Dermo-Sifiliográficas, 102(3), 199-205. doi:10.1016/j.ad.2010.08.003Biosense Laboratories www.biosense.de/home-e.htmMoehrle, M., & Garbe, C. (2000). Personal UV Dosimetry by Bacillus subtilis Spore Films. Dermatology, 200(1), 1-5. doi:10.1159/000018306O’Riordan, D. L., Glanz, K., Gies, P., & Elliott, T. (2008). A Pilot Study of the Validity of Self-reported Ultraviolet Radiation Exposure and Sun Protection Practices Among Lifeguards, Parents and Children. Photochemistry and Photobiology, 84(3), 774-778. doi:10.1111/j.1751-1097.2007.00262.xFurusawa, Y., Quintern, L. E., Holtschmidt, H., Koepke, P., & Saito, M. (1998). Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVB and UVA - results of a field campaign. Applied Microbiology and Biotechnology, 50(5), 597-603. doi:10.1007/s002530051341Munakata, N., Kazadzis, S., Bais, A. F., Hieda, K., Rontó, G., Rettberg, P., & Horneck, G. (2000). Comparisons of Spore Dosimetry and Spectral Photometry of Solar-UV Radiation at Four Sites in Japan and Europe¶. Photochemistry and Photobiology, 72(6), 739. doi:10.1562/0031-8655(2000)0722.0.co;2Quintern, L. ., Furusawa, Y., Fukutsu, K., & Holtschmidt, H. (1997). Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. Journal of Photochemistry and Photobiology B: Biology, 37(1-2), 158-166. doi:10.1016/s1011-1344(96)04414-4Seckmeyer , G. B. Mayer G. Bernhard 1998 The 1997 Status of Solar UV Spectroradiometry in Germany: Results from the National Intercomparison of UV Spectroradiometers, with contributions from Albold A., Baum W., Dehne K., Feister U., Gericke K., Grewe R., Gross C., Sandmann H., Schreiber J., Seidlitz H.K., Steinmetz M., Thiel S., Wallasch M. and Weller M., Garmisch-Partenkirchen 55 166 Shaker-Verlag Aachen, GermanyPrograma Meteorología de la Fundación Centro de Estudios Ambientales del Mediterráneo (Generalitat Valenciana) http://www.gva.es/ceamet/vigilancia/radUV/radUV.htmlVilaplana, J. M., Cachorro, V. E., Sorribas, M., Luccini, E., de Frutos, A. M., Berjón, A., & de la Morena, B. (2006). Modified Calibration Procedures for a Yankee Environmental System UVB-1 Biometer Based on Spectral Measurements with a Brewer Spectrophotometer. Photochemistry and Photobiology, 82(2), 508. doi:10.1562/2005-06-23-ra-590Hülsen, G., & Gröbner, J. (2007). Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Applied Optics, 46(23), 5877. doi:10.1364/ao.46.005877Cañada, J., Esteve, A. R., Marín, M. J., Utrillas, M. P., Tena, F., & Martínez-Lozano, J. A. (2008). Study of erythemal, UV (A + B) and global solar radiation in Valencia (Spain). International Journal of Climatology, 28(5), 693-702. doi:10.1002/joc.1569Tena, F., Martínez-Lozano, J. A., Utrillas, M. P., Marín, M. J., Esteve, A. R., & Cañada, J. (2009). The erythemal clearness index for Valencia, Spain. International Journal of Climatology, 29(1), 147-155. doi:10.1002/joc.1710GIOVANNI OMI/Aura Online Visualization and Analysis. Daily Level 3 Global Gridded Products http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omiAcker, J. G., & Leptoukh, G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14. doi:10.1029/2007eo020003MIRADOR NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) http://mirador.gsfc.nasa.gov/cgi-in/mirador/collectionlist.pl?keyword=omuvbdKalliskota, S., Kaurola, J., Taalas, P., Herman, J. R., Celarier, E. A., & Krotkov, N. A. (2000). Comparison of daily UV doses estimated from Nimbus 7/TOMS measurements and ground-based spectroradiometric data. Journal of Geophysical Research: Atmospheres, 105(D4), 5059-5067. doi:10.1029/1999jd900926AErosol RObotic NETwork (AERONET) Ground-based Remote Sensing Aerosol Networks Established by NASA and PHOTONS (Univ. of Lille 1, CNES, and CNRS-INSU) http://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactiveICNIRP STATEMENT—PROTECTION OF WORKERS AGAINST ULTRAVIOLET RADIATION. (2010). Health Physics, 99(1), 66-87. doi:10.1097/hp.0b013e3181d85908International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2007 Protecting Workers from Ultraviolet Radiation P. Vecchia M. Hietanen B. E. Stuck E. van Deventer S. Niu ICNIRP14 Oberschleissheim, GermanyAgencia Estatal de Meteorología (AEMET) http://www.aemet.es/NASA Total Ozone Mapping Spectrometer http://jwocky.gsfc.nasa.gov/Weihs, P., Blumthaler, M., Rieder, H. E., Kreuter, A., Simic, S., Laube, W., … Tanskanen, A. (2008). Measurements of UV irradiance within the area of one satellite pixel. Atmospheric Chemistry and Physics, 8(18), 5615-5626. doi:10.5194/acp-8-5615-2008Kazadzis, S., Bais, A., Balis, D., Kouremeti, N., Zempila, M., Arola, A., … Kazantzidis, A. (2009). Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel. Atmospheric Chemistry and Physics, 9(14), 4593-4601. doi:10.5194/acp-9-4593-2009Tanskanen, A., Lindfors, A., Määttä, A., Krotkov, N., Herman, J., Kaurola, J., … Tamminen, J. (2007). Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. Journal of Geophysical Research, 112(D24). doi:10.1029/2007jd008830Buchard, V., Brogniez, C., Auriol, F., Bonnel, B., Lenoble, J., Tanskanen, A., … Veefkind, P. (2008). Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics, 8(16), 4517-4528. doi:10.5194/acp-8-4517-2008Reinau, D., Weiss, M., Meier, C. R., Diepgen, T. L., & Surber, C. (2013). Outdoor workers’ sun-related knowledge, attitudes and protective behaviours: a systematic review of cross-sectional and interventional studies. British Journal of Dermatology, 168(5), 928-940. doi:10.1111/bjd.12160De Vries, E., Arnold, M., Altsitsiadis, E., Trakatelli, M., Hinrichs, B., … Stockfleth, E. (2012). Potential impact of interventions resulting in reduced exposure to ultraviolet (UV) radiation (UVA and UVB) on skin cancer incidence in four European countries, 2010-2050. British Journal of Dermatology, 167, 53-62. doi:10.1111/j.1365-2133.2012.11087.
    corecore