409 research outputs found

    Rising Level of Public Exposure to Mobile Phones: Accumulation through Additivity and Reflectivity

    Full text link
    A dramatic development occurring in our daily life is the increasing use of mobile equipment including mobile phones and wireless access to the Internet. They enable us to access several types of information more easily than in the past. Simultaneously, the density of mobile users is rapidly increasing. When hundreds of mobile phones emit radiation, their total power is found to be comparable to that of a microwave oven or a satellite broadcasting station. Thus, the question arises: what is the public exposure level in an area with many sources of electromagnetic wave emission? We show that this level can reach the reference level for general public exposure (ICNIRP Guideline) in daily life. This is caused by the fundamental properties of electromagnetic field, namely, reflection and additivity. The level of exposure is found to be much higher than that estimated by the conventional framework of analysis that assumes that the level rapidly decreases with the inverse square distance between the source and the affected person. A simple formula for the exposure level is derived by applying energetics to the electromagnetic field. The formula reveals a potential risk of intensive exposure.Comment: 5 pages, 1 fugure; to appear in J. Phys. Soc. Jpn. Vol.71 No.2 in Feb 200

    Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain

    Full text link
    "This is the peer reviewed version of the following article: Ysasi, Gonzalo Gurrea, Vicente Blanca Giménez, Juan Carlos Moreno, and María Antonia Serrano. 2018. Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain. Photochemistry and Photobiology 94 (2). Wiley: 390 97. doi:10.1111/php.12865, which has been published in final form at https://doi.org/10.1111/php.12865. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Continuous exposures to ultraviolet radiation can lead to harmful effects on human skin. Professional drivers may spend more than 8 h per day inside a vehicle. This study describes an analysis of the UVER (erythemal ultraviolet radiation) received by a driver and passenger inside a vehicle. A three-door Peugeot 206 was used for the study. VioSpor Blue Line dosimeters (with a response profile close to that of human skin) were used to measure the erythematic dose of UV radiation (able to produce erythema on human skin). Four dosimeters were placed in the driver¿s position and another four in the passenger¿s position. Daily irradiance was analyzed for a day in April using PMA radiometers. The measurements were obtained on relatively clear days from February to December 2009 between 9:30 A.M. and 3 P.M. Additionally, a prediction was made of the time required to produce an erythema on the driver¿s skin. UVER exposure, in some of the driver¿s positions, exceeds the Exposure Limits given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Skin protection measures should be taken into account by professional drivers to prevent the harmful effects of UVER radiation.This work was carried out with financing from the Ministry of Economy and Competitiveness, Project CGL2010-15931/CLI, from the Generalitat Valenciana within the PROMETEO/2010/064 Project, and the Spanish Ministry of Science and Innovation, in the CGL200761813 Project.Gurrea-Ysasi, G.; Blanca Giménez, V.; Moreno, J.; Serrano, M. (2018). Analysis of Erythemal UVB Dose Received Inside a Car in Valencia, Spain. Photochemistry and Photobiology. 94(2):390-397. https://doi.org/10.1111/php.12865S390397942Ysasi, G. G., & Ribera, L. J. C. (2013). Analysis of Two Kinds of Tree as Physical Barriers Against Erythemal UVB Radiation Received. Photochemistry and Photobiology, 89(3), 724-729. doi:10.1111/php.12020Giménez, V. B., Ysasi, G. G., Moreno, J. C., & Serrano, M. A. (2015). Maximum Incident Erythemally Effective UV Exposure Received by Construction Workers, in Valencia, Spain. Photochemistry and Photobiology, 91(6), 1505-1509. doi:10.1111/php.12530Parisi, A. V., Sabburg, J., & Kimlin, M. G. (2004). Scattered and Filtered Solar UV Measurements. Advances in Global Change Research. doi:10.1007/978-94-015-1246-6Lavker, R. M., Gerberick, G. F., Veres, D., Irwin, C. J., & Kaidbey, K. H. (1995). Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. Journal of the American Academy of Dermatology, 32(1), 53-62. doi:10.1016/0190-9622(95)90184-1Lavker, R., & Kaidbey, K. (1997). The Spectral Dependence for UVA-Induced Cumulative Damage in Human Skin. Journal of Investigative Dermatology, 108(1), 17-21. doi:10.1111/1523-1747.ep12285613Lowe, N. J., Meyers, D. P., Wieder, J. M., Luftman, D., Borget, T., Lehman, M. D., … Scott, I. R. (1995). Low Doses of Repetitive Ultraviolet A Induce Morphologic Changes in Human Skin. Journal of Investigative Dermatology, 105(6), 739-743. doi:10.1111/1523-1747.ep12325517Serre, I., Cano, J. P., Picot, M.-C., Meynadier, J., & Meunier, L. (1997). Immunosuppression induced by acute solar-simulated ultraviolet exposure in humans: Prevention by a sunscreen with a sun protection factor of 15 and high UVA protection. Journal of the American Academy of Dermatology, 37(2), 187-194. doi:10.1016/s0190-9622(97)80123-5Reglamento (CE) 561/2006 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 15 de marzo de 2006GUIDELINES ON LIMITS OF EXPOSURE TO ULTRAVIOLET RADIATION OF WAVELENGTHS BETWEEN 180 nm AND 400 nm (INCOHERENT OPTICAL RADIATION). (2004). Health Physics, 87(2), 171-186. doi:10.1097/00004032-200408000-00006Commission Internationale de l'Eclairage 1999 Erythema Reference Action Spectrum and Standard Erythema dose. CIE S-007-1998Gies, P., & Wright, J. (2003). Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry¶. Photochemistry and Photobiology, 78(4), 342. doi:10.1562/0031-8655(2003)0782.0.co;2Moehrle, M., & Garbe, C. (2000). Personal UV Dosimetry by Bacillus subtilis Spore Films. Dermatology, 200(1), 1-5. doi:10.1159/000018306CEAM, Centro de Estudios Ambientales del MediterráneoDuarte, I., Rotter, A., Malvestiti, A., & Silva, M. (2009). The role of glass as a barrier against the transmission of ultraviolet radiation: an experimental study. Photodermatology, Photoimmunology & Photomedicine, 25(4), 181-184. doi:10.1111/j.1600-0781.2009.00434.

    Occupational UV exposure of environmental agents in Valencia, Spain

    Full text link
    The aim of this paper is to measure UV exposure of environmental agents in their occupational schedules in summer in Valencia province (Spain) using VioSpor personal dosimeters attached to several parts of their bodies. Due to its geographical situation, Valencia receives large UVR doses throughout the year, and the work of environmental agents is directly related to the protection, care, and custody of natural, often in mountainous areas. Comparison with the occupational UV exposure limit showed that the agents received an erythemal UV dose in excess of occupational guidelines, indicating that protective measures against this risk are highly advisable.The authors wish to thank the environmental agents of the Conselleria de Infraestructuras, Territorio y Medio Ambiente of the Generalitat Valenciana for their cooperation in this study. We also wish to thank the Head of the Conselleria for permitting the workers to take part. We are also grateful to the State Agency for Meteorology and the Generalitat Valenciana for providing us with access to their meteorological data. The data used in this work were originally acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The translation of this study was funded by the Universitat Politecnica de Valencia, Spain. The research was supported by the Spanish Ministry of Education and Science within Research Project CGL2010-15931 and by the Generalitat Valenciana within the PROMETEO/2010/064 Project.Serrano Jareño, MA.; Cañada, J.; Moreno Esteve, JC.; Gurrea Ysasi, G. (2014). Occupational UV exposure of environmental agents in Valencia, Spain. Photochemistry and Photobiology. 90:911-918. https://doi.org/10.1111/php.12252S91191890Juzeniene, A., Brekke, P., Dahlback, A., Andersson-Engels, S., Reichrath, J., Moan, K., … Moan, J. (2011). Solar radiation and human health. Reports on Progress in Physics, 74(6), 066701. doi:10.1088/0034-4885/74/6/066701Norval, M., Lucas, R. M., Cullen, A. P., de Gruijl, F. R., Longstreth, J., Takizawa, Y., & van der Leun, J. C. (2011). The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 199. doi:10.1039/c0pp90044cSklar, L. R., Almutawa, F., Lim, H. W., & Hamzavi, I. (2013). Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem. Photobiol. Sci., 12(1), 54-64. doi:10.1039/c2pp25152cGarbe, C., & Leiter, U. (2009). Melanoma epidemiology and trends. Clinics in Dermatology, 27(1), 3-9. doi:10.1016/j.clindermatol.2008.09.001Madan, V., Lear, J. T., & Szeimies, R.-M. (2010). Non-melanoma skin cancer. The Lancet, 375(9715), 673-685. doi:10.1016/s0140-6736(09)61196-xLomas, A., Leonardi‐Bee, J., & Bath‐Hextall, F. (2012). A systematic review of worldwide incidence of nonmelanoma skin cancer. British Journal of Dermatology, 166(5), 1069-1080. doi:10.1111/j.1365-2133.2012.10830.xArnold , M. C. Holterhues L. M. Hollestein J. W. W. Coebergh T. Nijsten E. Pukkala B. Holleczek L. Tryggvad_ottir H. Comber M. J. Bento C. H. S. Diba R. Micallef M. Primic_Zakelj M. I. Izarzugaza J. Perucha R. Marcos-Gragera J. Galceran E. Ardanaz R. Schaffar A. Pring E. de Vries 2013 Trends in incidence and predictions of cutaneous melanoma across Europe up to 2015 10.1111/jdv.12236Erdmann, F., Lortet-Tieulent, J., Schüz, J., Zeeb, H., Greinert, R., Breitbart, E. W., & Bray, F. (2012). International trends in the incidence of malignant melanoma 1953-2008-are recent generations at higher or lower risk? International Journal of Cancer, 132(2), 385-400. doi:10.1002/ijc.27616Ferlay , J. H. R. Shin F. Bray D. Forman C. Mathers D. M. Parkin 2010 GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet] International Agency for Research on Cancer Lyon, France http://globocan.iarc.frHousman, T. S., Feldman, S. R., Williford, P. M., Fleischer, A. B., Goldman, N. D., Acostamadiedo, J. M., & Chen, G. J. (2003). Skin cancer is among the most costly of all cancers to treat for the Medicare population. Journal of the American Academy of Dermatology, 48(3), 425-429. doi:10.1067/mjd.2003.186De Vries, E., van de Poll-Franse, L. V., Louwman, W. J., de Gruijl, F. R., & Coebergh, J. W. W. (2005). Predictions of skin cancer incidence in the Netherlands up to 2015. British Journal of Dermatology, 152(3), 481-488. doi:10.1111/j.1365-2133.2005.06386.xCáncer en cifras Centro Nacional de Epidemiología Instituto de Salud Carlos III http://193.146.50.130/morta/grafs.php#grafsDe Vries, E., Bray, F. I., Coebergh, J. W. W., & Parkin, D. M. (2003). Changing epidemiology of malignant cutaneous melanoma in Europe 1953-1997: Rising trends in incidence and mortality but recent stabilizations in Western Europe and decreases in Scandinavia. International Journal of Cancer, 107(1), 119-126. doi:10.1002/ijc.11360Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W. W., Comber, H., … Bray, F. (2013). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. European Journal of Cancer, 49(6), 1374-1403. doi:10.1016/j.ejca.2012.12.027European Detailed Mortality Database World Health Organization Regional Office for Europe http://data.euro.who.int/hfamdb/De Gruijl, F. R. (2011). Sufficient Vitamin D from Casual Sun Exposure? Photochemistry and Photobiology, 87(3), 598-601. doi:10.1111/j.1751-1097.2011.00918.xWebb, A. R., Kift, R., Berry, J. L., & Rhodes, L. E. (2011). The Vitamin D Debate: Translating Controlled Experiments into Reality for Human Sun Exposure Times. Photochemistry and Photobiology, 87(3), 741-745. doi:10.1111/j.1751-1097.2011.00898.xJohn, E. M., Koo, J., & Schwartz, G. G. (2007). Sun Exposure and Prostate Cancer Risk: Evidence for a Protective Effect of Early-Life Exposure. Cancer Epidemiology Biomarkers & Prevention, 16(6), 1283-1286. doi:10.1158/1055-9965.epi-06-1053Grant, W. B. (2010). Relation between prediagnostic serum 25-hydroxyvitamin D level and incidence of breast, colorectal, and other cancers. Journal of Photochemistry and Photobiology B: Biology, 101(2), 130-136. doi:10.1016/j.jphotobiol.2010.04.008Kampman, M. T., & Steffensen, L. H. (2010). The role of vitamin D in multiple sclerosis. Journal of Photochemistry and Photobiology B: Biology, 101(2), 137-141. doi:10.1016/j.jphotobiol.2010.04.003Zittermann, A., & Gummert, J. F. (2010). Sun, vitamin D, and cardiovascular disease. Journal of Photochemistry and Photobiology B: Biology, 101(2), 124-129. doi:10.1016/j.jphotobiol.2010.01.006EUROMELANOMA Campaign 2012 http://www.euromelanoma.org/spain/home-1Stratigos, A. J., Forsea, A. M., van der Leest, R. J. T., de Vries, E., Nagore, E., Bulliard, J.-L., … del Marmol, V. (2012). Euromelanoma: a dermatology-led European campaign against nonmelanoma skin cancer and cutaneous melanoma. Past, present and future. British Journal of Dermatology, 167, 99-104. doi:10.1111/j.1365-2133.2012.11092.xCAREX project http://www.esf.org/research-areas/space-sciences/activities/carex-project.htmlGies, P., & Wright, J. (2003). Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry¶. Photochemistry and Photobiology, 78(4), 342. doi:10.1562/0031-8655(2003)0782.0.co;2Moehrle, M., Dennenmoser, B., & Garbe, C. (2003). Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. International Journal of Cancer, 103(6), 775-778. doi:10.1002/ijc.10884Thieden, E., Collins, S. M., Philipsen, P. A., Murphy, G. M., & Wulf, H. C. (2005). Ultraviolet exposure patterns of Irish and Danish gardeners during work and leisure. British Journal of Dermatology, 153(4), 795-801. doi:10.1111/j.1365-2133.2005.06797.xGlanz, K., Buller, D. B., & Saraiya, M. (2007). Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations. Environmental Health, 6(1). doi:10.1186/1476-069x-6-22Milon, A., Sottas, P.-E., Bulliard, J.-L., & Vernez, D. (2006). Effective exposure to solar UV in building workers: influence of local and individual factors. Journal of Exposure Science & Environmental Epidemiology, 17(1), 58-68. doi:10.1038/sj.jes.7500521Siani, A. M., Casale, G. R., Diémoz, H., Agnesod, G., Kimlin, M. G., Lang, C. A., & Colosimo, A. (2008). Personal UV exposure in high albedo alpine sites. Atmospheric Chemistry and Physics, 8(14), 3749-3760. doi:10.5194/acp-8-3749-2008Gies, P., Watzl, R., Javorniczky, J., Roy, C., Henderson, S., Ayton, J., & Kingston, M. (2009). Measurement of the UVR Exposures of Expeditioners on Antarctic Resupply Voyages. Photochemistry and Photobiology, 85(6), 1485-1490. doi:10.1111/j.1751-1097.2009.00602.xHammond, V., Reeder, A. I., & Gray, A. (2009). Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand. Public Health, 123(2), 182-187. doi:10.1016/j.puhe.2008.12.007Serrano, M. A., Cañada, J., & Moreno, J. C. (2009). Erythemal Ultraviolet Exposure in Two Groups of Outdoor Workers in Valencia, Spain. Photochemistry and Photobiology, 85(6), 1468-1473. doi:10.1111/j.1751-1097.2009.00609.xSchmalwieser, A. W., Cabaj, A., Schauberger, G., Rohn, H., Maier, B., & Maier, H. (2010). Facial Solar UV Exposure of Austrian Farmers During Occupation. Photochemistry and Photobiology, 86(6), 1404-1413. doi:10.1111/j.1751-1097.2010.00812.xSiani, A. M., Casale, G. R., Sisto, R., Colosimo, A., Lang, C. A., & Kimlin, M. G. (2011). Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy). Photochemistry and Photobiology, 87(4), 925-934. doi:10.1111/j.1751-1097.2011.00934.xHåkansson, N., Floderus, B., Gustavsson, P., Feychting, M., & Hallin, N. (2001). Occupational Sunlight Exposure and Cancer Incidence among Swedish Construction Workers. Epidemiology, 12(5), 552-557. doi:10.1097/00001648-200109000-00015Gandini, S., Sera, F., Cattaruzza, M. S., Pasquini, P., Picconi, O., Boyle, P., & Melchi, C. F. (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. European Journal of Cancer, 41(1), 45-60. doi:10.1016/j.ejca.2004.10.016Radespiel-Tröger, M., Meyer, M., Pfahlberg, A., Lausen, B., Uter, W., & Gefeller, O. (2008). Outdoor work and skin cancer incidence: a registry-based study in Bavaria. International Archives of Occupational and Environmental Health, 82(3), 357-363. doi:10.1007/s00420-008-0342-0Kenborg, L., Jørgensen, A. D., Budtz-Jørgensen, E., Knudsen, L. E., & Hansen, J. (2010). Occupational exposure to the sun and risk of skin and lip cancer among male wage earners in Denmark: a population-based case–control study. Cancer Causes & Control, 21(8), 1347-1355. doi:10.1007/s10552-010-9562-1Lichte, V., Dennenmoser, B., Dietz, K., Häfner, H.-M., Schlagenhauff, B., Garbe, C., … Moehrle, M. (2009). Professional risk for skin cancer development in male mountain guides - a cross-sectional study. Journal of the European Academy of Dermatology and Venereology, 24(7), 797-804. doi:10.1111/j.1468-3083.2009.03528.xDiepgen, T. L., Fartasch, M., Drexler, H., & Schmitt, J. (2012). Occupational skin cancer induced by ultraviolet radiation and its prevention. British Journal of Dermatology, 167, 76-84. doi:10.1111/j.1365-2133.2012.11090.xSchmitt, J., Seidler, A., Diepgen, T. L., & Bauer, A. (2011). Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. British Journal of Dermatology, 164(2), 291-307. doi:10.1111/j.1365-2133.2010.10118.xDe Vries, E., Trakatelli, M., Kalabalikis, D., Ferrandiz, L., Ruiz-de-Casas, A., … Moreno-Ramirez, D. (2012). Known and potential new risk factors for skin cancer in European populations: a multicentre case-control study. British Journal of Dermatology, 167, 1-13. doi:10.1111/j.1365-2133.2012.11081.xSchmitt, J., Diepgen, T., & Bauer, A. (2010). Berufliche Exposition gegenüber natürlicher UV-Strahlung und nicht-melanozytärer Hautkrebs - ein systematischer Review zur Frage einer neuen Berufskrankheit. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 8(4), 250-264. doi:10.1111/j.1610-0387.2009.07260_supp.xBlumthaler, M., Ambach, W., & Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology B: Biology, 39(2), 130-134. doi:10.1016/s1011-1344(96)00018-8Aceituno-Madera, P., Buendía-Eisman, A., Olmo, F. J., Jiménez-Moleón, J. J., & Serrano-Ortega, S. (2011). Melanoma, altitud y radiación UVB. Actas Dermo-Sifiliográficas, 102(3), 199-205. doi:10.1016/j.ad.2010.08.003Biosense Laboratories www.biosense.de/home-e.htmMoehrle, M., & Garbe, C. (2000). Personal UV Dosimetry by Bacillus subtilis Spore Films. Dermatology, 200(1), 1-5. doi:10.1159/000018306O’Riordan, D. L., Glanz, K., Gies, P., & Elliott, T. (2008). A Pilot Study of the Validity of Self-reported Ultraviolet Radiation Exposure and Sun Protection Practices Among Lifeguards, Parents and Children. Photochemistry and Photobiology, 84(3), 774-778. doi:10.1111/j.1751-1097.2007.00262.xFurusawa, Y., Quintern, L. E., Holtschmidt, H., Koepke, P., & Saito, M. (1998). Determination of erythema-effective solar radiation in Japan and Germany with a spore monolayer film optimized for the detection of UVB and UVA - results of a field campaign. Applied Microbiology and Biotechnology, 50(5), 597-603. doi:10.1007/s002530051341Munakata, N., Kazadzis, S., Bais, A. F., Hieda, K., Rontó, G., Rettberg, P., & Horneck, G. (2000). Comparisons of Spore Dosimetry and Spectral Photometry of Solar-UV Radiation at Four Sites in Japan and Europe¶. Photochemistry and Photobiology, 72(6), 739. doi:10.1562/0031-8655(2000)0722.0.co;2Quintern, L. ., Furusawa, Y., Fukutsu, K., & Holtschmidt, H. (1997). Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. Journal of Photochemistry and Photobiology B: Biology, 37(1-2), 158-166. doi:10.1016/s1011-1344(96)04414-4Seckmeyer , G. B. Mayer G. Bernhard 1998 The 1997 Status of Solar UV Spectroradiometry in Germany: Results from the National Intercomparison of UV Spectroradiometers, with contributions from Albold A., Baum W., Dehne K., Feister U., Gericke K., Grewe R., Gross C., Sandmann H., Schreiber J., Seidlitz H.K., Steinmetz M., Thiel S., Wallasch M. and Weller M., Garmisch-Partenkirchen 55 166 Shaker-Verlag Aachen, GermanyPrograma Meteorología de la Fundación Centro de Estudios Ambientales del Mediterráneo (Generalitat Valenciana) http://www.gva.es/ceamet/vigilancia/radUV/radUV.htmlVilaplana, J. M., Cachorro, V. E., Sorribas, M., Luccini, E., de Frutos, A. M., Berjón, A., & de la Morena, B. (2006). Modified Calibration Procedures for a Yankee Environmental System UVB-1 Biometer Based on Spectral Measurements with a Brewer Spectrophotometer. Photochemistry and Photobiology, 82(2), 508. doi:10.1562/2005-06-23-ra-590Hülsen, G., & Gröbner, J. (2007). Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Applied Optics, 46(23), 5877. doi:10.1364/ao.46.005877Cañada, J., Esteve, A. R., Marín, M. J., Utrillas, M. P., Tena, F., & Martínez-Lozano, J. A. (2008). Study of erythemal, UV (A + B) and global solar radiation in Valencia (Spain). International Journal of Climatology, 28(5), 693-702. doi:10.1002/joc.1569Tena, F., Martínez-Lozano, J. A., Utrillas, M. P., Marín, M. J., Esteve, A. R., & Cañada, J. (2009). The erythemal clearness index for Valencia, Spain. International Journal of Climatology, 29(1), 147-155. doi:10.1002/joc.1710GIOVANNI OMI/Aura Online Visualization and Analysis. Daily Level 3 Global Gridded Products http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omiAcker, J. G., & Leptoukh, G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14. doi:10.1029/2007eo020003MIRADOR NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) http://mirador.gsfc.nasa.gov/cgi-in/mirador/collectionlist.pl?keyword=omuvbdKalliskota, S., Kaurola, J., Taalas, P., Herman, J. R., Celarier, E. A., & Krotkov, N. A. (2000). Comparison of daily UV doses estimated from Nimbus 7/TOMS measurements and ground-based spectroradiometric data. Journal of Geophysical Research: Atmospheres, 105(D4), 5059-5067. doi:10.1029/1999jd900926AErosol RObotic NETwork (AERONET) Ground-based Remote Sensing Aerosol Networks Established by NASA and PHOTONS (Univ. of Lille 1, CNES, and CNRS-INSU) http://aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactiveICNIRP STATEMENT—PROTECTION OF WORKERS AGAINST ULTRAVIOLET RADIATION. (2010). Health Physics, 99(1), 66-87. doi:10.1097/hp.0b013e3181d85908International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2007 Protecting Workers from Ultraviolet Radiation P. Vecchia M. Hietanen B. E. Stuck E. van Deventer S. Niu ICNIRP14 Oberschleissheim, GermanyAgencia Estatal de Meteorología (AEMET) http://www.aemet.es/NASA Total Ozone Mapping Spectrometer http://jwocky.gsfc.nasa.gov/Weihs, P., Blumthaler, M., Rieder, H. E., Kreuter, A., Simic, S., Laube, W., … Tanskanen, A. (2008). Measurements of UV irradiance within the area of one satellite pixel. Atmospheric Chemistry and Physics, 8(18), 5615-5626. doi:10.5194/acp-8-5615-2008Kazadzis, S., Bais, A., Balis, D., Kouremeti, N., Zempila, M., Arola, A., … Kazantzidis, A. (2009). Spatial and temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel. Atmospheric Chemistry and Physics, 9(14), 4593-4601. doi:10.5194/acp-9-4593-2009Tanskanen, A., Lindfors, A., Määttä, A., Krotkov, N., Herman, J., Kaurola, J., … Tamminen, J. (2007). Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. Journal of Geophysical Research, 112(D24). doi:10.1029/2007jd008830Buchard, V., Brogniez, C., Auriol, F., Bonnel, B., Lenoble, J., Tanskanen, A., … Veefkind, P. (2008). Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics, 8(16), 4517-4528. doi:10.5194/acp-8-4517-2008Reinau, D., Weiss, M., Meier, C. R., Diepgen, T. L., & Surber, C. (2013). Outdoor workers’ sun-related knowledge, attitudes and protective behaviours: a systematic review of cross-sectional and interventional studies. British Journal of Dermatology, 168(5), 928-940. doi:10.1111/bjd.12160De Vries, E., Arnold, M., Altsitsiadis, E., Trakatelli, M., Hinrichs, B., … Stockfleth, E. (2012). Potential impact of interventions resulting in reduced exposure to ultraviolet (UV) radiation (UVA and UVB) on skin cancer incidence in four European countries, 2010-2050. British Journal of Dermatology, 167, 53-62. doi:10.1111/j.1365-2133.2012.11087.

    Pylons in the back yard: local planning and perceived risks to health

    Get PDF
    Health fears arising from the presence of high-voltage power lines in residential areas have received recent attention in spatial planning. A study of stances taken by planning authorities in England and Wales shows their willingness to give expression to the concerns of local communities through precautionary measures, and the difficulties encountered in the face of official statements and industry opposition. These attempts to embody local feeling in patterns of development are illustrative of the increasing prevalence of a sense of risk in contemporary society. The spatial patterns of risk are also revealed, which owe much to the presence and distribution of industrial infrastructure in the landscape and to the associated contested use of land.</p

    Assessment of Biologically Effective Solar Ultraviolet Exposures for Court Staff and Competitors During a Major Australian Tennis Tournament

    Get PDF
    Sport is an integral and enduring part of many societies, such as Australia. Participation in outdoor sports, such as tennis, comes with a very real risk of dangerous solar ultraviolet exposure which can result in erythema (sunburn), serious conditions such as skin cancer, including melanoma, and eye conditions such as cataracts and pterygium. This study remotely assesses the effective ultraviolet exposures in response to the increased sun safety awareness at a major summertime tennis tournament in Australia. The assessment only uses publicly accessible data and information. It was found that tournament organizers have effectively adopted sun-safe protocols into the uniform policy that the court officials (judges and ball kids) are mandated to follow. The combination of sun-participant geometry and the photoprotection provided by uniforms significantly reduced the ambient ultraviolet exposure, which was recorded to be as high as 9.9 SED/h, to just 1.0 and 0.5 SED/h for ball kids and judges, respectively, compared to up to 2.0 SED/h for players. Even though caution is needed against complacency with sun safety, with the need for the court officials and the players to still apply sunscreen, the court officials provided persistent visual role modeling of sun-safe behaviors

    Economic and biological costs of cardiac imaging

    Get PDF
    Medical imaging market consists of several billion tests per year worldwide. Out of these, at least one third are cardiovascular procedures. Keeping in mind that each test represents a cost, often a risk, and a diagnostic hypothesis, we can agree that every unnecessary and unjustifiable test is one test too many. Small individual costs, risks, and wastes multiplied by billions of examinations per year represent an important population, society and environmental burden. Unfortunately, the appropriateness of cardiac imaging is extra-ordinarily low and there is little awareness in patients and physicians of differential costs, radiological doses, and long term risks of different imaging modalities. For a resting cardiac imaging test, being the average cost (not charges) of an echocardiogram equal to 1 (as a cost comparator), the cost of a CT is 3.1x, of a SPECT 3.27x, of a Cardiovascular Magnetic Resonance imaging 5.51x, of a PET 14.03x, and of a right and left heart catheterization 19.96x. For stress cardiac imaging, compared with the treadmill exercise test equal to 1 (as a cost comparator), the cost of stress echocardiography is 2.1x and of a stress SPECT scintigraphy is 5.7x. Biohazards and downstream long-term costs linked to radiation-induced oncogenesis should also be considered. The radiation exposure is absent in echo and magnetic resonance, and corresponds to 500 chest x rays for a sestamibi cardiac stress scan and to 1150 chest x rays for a thallium scan. The corresponding extra-risk in a lifetime of fatal cancer is 1 in 2000 exposed patients for a sestamibi stress and 1 in 1000 for a thallium scan. Increased awareness of economic, biologic, and environmental costs of cardiac imaging will hopefully lead to greater appropriateness, wisdom and prudence from both the prescriber and the practitioner. In this way, the sustainability of cardiac imaging will eventually improve

    Experiences of crisis communication during radiation emergency and risk communication for recovery of the community in Fukushima

    Get PDF
    Since 2011, Nagasaki University (Nagasaki, Japan) has been assisting the reconstruction efforts of Kawauchi Village (Fukushima Prefecture), which was the first village to decide to return to their home town after the evacuation due to the accident at the Fukushima Daiichi Nuclear Power Station. In April 2013, Nagasaki University and the Kawauchi Government Office concluded an agreement concerning comprehensive cooperation toward the reconstruction of the village. Furthermore, we began comprehensive support for the residents of Tomioka who returned to their hometown in 2017, and of Ohkuma town in 2020. On the basis of the experiences in Kawauchi, Tomioka and Ohkuma, it is clear that the cooperation of residents, local authorities and specialists is essential for the recovery of areas affected by the accident at the Fukushima Daiichi Nuclear Power Station. Accumulated experiences and practices should be carefully evaluated and recorded to prepare for unexpected nuclear disasters in the future

    A precautionary public health protection strategy for the possible risk of childhood leukaemia from exposure to power frequency magnetic fields

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological evidence showing a consistent association between the risk of childhood leukaemia and exposure to power frequency magnetic fields has been accumulating. This debate considers the additional precautionary intervention needed to manage this risk, when it exceeds the protection afforded by the exposure guidelines as recommended by the International Commission on Non-Ionizing Radiation Protection.</p> <p>Methods</p> <p>The Bradford-Hill Criteria are guidelines for evaluating the scientific evidence that low frequency magnetic fields cause childhood leukaemia. The criteria are used for assessing the strength of scientific evidence and here have been applied to considering the strength of evidence that exposures to extremely low frequency magnetic fields may increase the risk of childhood leukaemia. The applicability of precaution is considered using the risk management framework outlined in a European Commission (EC) communication on the Precautionary Principle. That communication advises that measures should be proportionate, non-discriminatory, consistent with similar measures already taken, based on an examination of the benefits and costs of action and inaction, and subject to review in the light of new scientific findings.</p> <p>Results</p> <p>The main evidence for a risk is an epidemiological association observed in several studies and meta-analyses; however, the number of highly exposed children is small and the association could be due to a combination of selection bias, confounding and chance. Corroborating experimental evidence is limited insofar as there is no clear indication of harm at the field levels implicated; however, the aetiology of childhood leukaemia is poorly understood. Taking a precautionary approach suggests that low-cost intervention to reduce exposure is appropriate. This assumes that if the risk is real, its impact is likely to be small. It also recognises the consequential cost of any major intervention. The recommendation is controversial in that other interpretations of the data are possible, and low-cost intervention may not fully alleviate the risk.</p> <p>Conclusions</p> <p>The debate shows how the EC risk management framework can be used to apply the Precautionary Principle to small and uncertain public health risks. However, despite the need for evidence-based policy making, many of the decisions remain value driven and therefore subjective.</p
    corecore