207 research outputs found

    Softening-up mannan-rich cell walls

    Get PDF
    The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-beta-mannanases (MANs) that catalyse the random hydrolysis of the beta-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes

    Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon : Expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination

    Get PDF
    © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.Peer reviewedFinal Published versio

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A

    Get PDF
    Background: Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings: We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC based or 583 LTC based contigs. Conclusions/Significance: The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A

    A barley PHD finger transcription factor that confers male sterility by affecting tapetal development

    Get PDF
    Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development

    The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species

    Get PDF
    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources

    Genome distribution of differential homoeologue contributions to leaf gene expression in bread wheat

    Get PDF
    Using a combination of de novo transcriptome assembly, a newly-developed 9495-marker transcriptome SNP genetic linkage map and comparative genomics approaches, we developed an ordered set of non-redundant transcripts for each of the sub-genomes of hexaploid wheat: A (47,160 unigenes), B (59,663 unigenes) and D (40,588 unigenes). We used these as reference sequences against which to map Illumina mRNA-seq reads derived from young leaf tissue. Transcript abundance was quantified for each unigene. Using a 3-way reciprocal BLAST approach, 15,527 triplet sets of homoeologues (one from each genome) were identified. Differential expression (P<0.05) was identified for 5,248 unigenes, with 2906 represented at greater abundance than their two homoeologues and 2342 represented at lower abundance than their two homoeologues. Analysis of gene ontology terms revealed no biases between homoeologues. There was no evidence of genome-wide dominance effects, rather the more highly transcribed individual genes were distributed throughout all three genomes. Transcriptome Display Tile Plot (TDTP), a visualization approach based on CMYK colourspace, was developed and used to assess the genome for regions of skewed homoeologue transcript abundance. Extensive striation was revealed, indicative of many small regions of genome dominance (transcripts of homoeologues from one genome more abundant than the others) and many larger regions of genome repression (transcripts of homoeologues from one genome less abundant than the others)

    Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol

    Get PDF
    Summary: The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F.graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F.graminearum wild-type and defined mutants: the DON-deficient Δtri5 mutant and the DON-producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen-activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post-inoculation, the glucose amounts in the non-cellulosic cell wall fraction were only increased in spikelets infected with the DON-producing strains wild-type, Δfgl1 and Δgpmk1. Hence, we tested for DON-induced cell wall changes in B.distachyon, which were most prominent at DON concentrations ranging from 1 to 100ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1ppm prior to F.graminearum wild-type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence-related gene expression after DON pretreatment and fungal infection suggested that DON-induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB
    corecore