44 research outputs found

    GPR50 Interacts with TIP60 to Modulate Glucocorticoid Receptor Signalling

    Get PDF
    GPR50 is an orphan G-protein coupled receptor most closely related to the melatonin receptors. The physiological function of GPR50 remains unclear, although our previous studies implicate the receptor in energy homeostasis. Here, we reveal a role for GPR50 as a signalling partner and modulator of the transcriptional co-activator TIP60. This interaction was identified in a yeast-two-hybrid screen, and confirmed by co-immunoprecipitation and co-localisation of TIP60 and GPR50 in HEK293 cells. Co-expression with TIP60 increased perinuclear localisation of full length GPR50, and resulted in nuclear translocation of the cytoplasmic tail of the receptor, suggesting a functional interaction of the two proteins. We further demonstrate that GPR50 can enhance TIP60-coactiavtion of glucocorticoid receptor (GR) signalling. In line with in vitro results, repression of pituitary Pomc expression, and induction of gluconeogenic genes in liver in response to the GR agonist, dexamethasone was attenuated in Gpr50−/− mice. These results identify a novel role for GPR50 in glucocorticoid receptor signalling through interaction with TIP60

    TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1

    Get PDF
    The precise mechanism by which glucocorticoid receptor (GR) regulates the transcription of its target genes is largely unknown. This is, in part, due to the lack of structural and functional information about GR's N-terminal activation function domain, AF1. Like many steroid hormone receptors (SHRs), the GR AF1 exists in an intrinsically disordered (ID) conformation or an ensemble of conformers that collectively appears to be unstructured. The GR AF1 is known to recruit several coregulatory proteins, including those from the basal transcriptional machinery, e.g., TATA box binding protein (TBP) that forms the basis for the multiprotein transcription initiation complex. However, the precise mechanism of this process is unknown. We have earlier shown that conditional folding of the GR AF1 is the key for its interactions with critical coactivator proteins. We hypothesize that binding of TBP to AF1 results in the structural rearrangement of the ID AF1 domain such that its surfaces become easily accessible for interaction with other coactivators. To test this hypothesis, we determined whether TBP binding-induced structure formation in the GR AF1 facilitates its interaction with steroid receptor coactivator-1 (SRC-1), a critical coactivator that is important for GR-mediated transcriptional activity. Our data show that stoichiometric binding of TBP induces significantly higher helical content at the expense of random coil configuration in the GR AF1. Further, we found that this induced AF1 conformation facilitates its interaction with SRC-1, and subsequent AF1-mediated transcriptional activity. Our results may provide a potential mechanism through which GR and by large other SHRs may regulate the expression of the GR-target genes

    Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene

    Get PDF
    Mutations in PROP1 are a common genetic cause of multiple pituitary hormone deficiency (MPHD). We used a comparative genomics approach to predict the transcriptional regulatory domains of Prop1 and tested them in cell culture and mice. A BAC transgene containing Prop1 completely rescues the Prop1 mutant phenotype, demonstrating that the regulatory elements necessary for proper PROP1 transcription are contained within the BAC. We generated DNA sequences from the PROP1 genes in lemur, pig, and five different primate species. Comparison of these with available human and mouse PROP1 sequences identified three putative regulatory sequences that are highly conserved. These are located in the PROP1 promoter proximal region, within the first intron of PROP1, and downstream of PROP1. Each of the conserved elements elicited orientation-specific enhancer activity in the context of the Drosophila alcohol dehydrogenase minimal promoter in both heterologous and pituitary-derived cells lines. The intronic element is sufficient to confer dorsal expansion of the pituitary expression domain of a transgene, suggesting that this element is important for the normal spatial expression of endogenous Prop1 during pituitary development. This study illustrates the usefulness of a comparative genomics approach in the identification of regulatory elements that may be the site of mutations responsible for some cases of MPHD

    Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy

    No full text
    Functional interactions between factors bound at multiple sites on DNA often lead to a synergistic or more-than-additive transcriptional response. We previously defined a class of peptide sequences termed synergy control motifs (SC motifs) that function in multiple regulators by selectively inhibiting synergistic activity driven from multiple but not single response elements. By studying the prototypic SC motifs of the glucocorticoid receptor, we show that SC motifs inhibit transcription per se both in cis and in trans, and that a requirement for multiple contacts with DNA renders them selective for compound response elements. Notably, SC motifs are sites for SUMOylation, and the degree of modification correlates strongly with the extent of synergy control. Recruiting SUMO to the promoter either independently or as a fusion to the glucocorticoid receptor is sufficient to recapitulate the in trans and in cis inhibition by SC motifs without apparent changes in subcellular localization. Moreover, we find that the core ubiquitin fold domain of SUMO is sufficient for inhibition and that, independently of their potential for polySUMO chain formation, SUMO-2 and SUMO-3 are more effective inhibitors than SUMO-1

    RSUME Enhances Glucocorticoid Receptor SUMOylation and Transcriptional Activity

    No full text
    Glucocorticoid receptor (GR) activity is modulated by posttranslational modifications, including phosphorylation, ubiquitination, and SUMOylation. The GR has three SUMOylation sites: lysine 297 (K297) and K313 in the N-terminal domain (NTD) and K721 within the ligand-binding domain. SUMOylation of the NTD sites mediates the negative effect of the synergy control motifs of GR on promoters with closely spaced GR binding sites. There is scarce evidence on the role of SUMO conjugation to K721 and its impact on GR transcriptional activity. We have previously shown that RSUME (RWD-containing SUMOylation enhancer) increases protein SUMOylation. We now demonstrate that RSUME interacts with the GR and increases its SUMOylation. RSUME regulates GR transcriptional activity and the expression of its endogenous target genes, FKBP51 and S100P. RSUME uncovers a positive role for the third SUMOylation site, K721, on GR-mediated transcription, demonstrating that GR SUMOylation acts positively in the presence of a SUMOylation enhancer. Both mutation of K721 and small interfering RNA-mediated RSUME knockdown diminish GRIP1 coactivator activity. RSUME, whose expression is induced under stress conditions, is a key factor in heat shock-induced GR SUMOylation. These results show that inhibitory and stimulatory SUMO sites are present in the GR and at higher SUMOylation levels the stimulatory one becomes dominant

    Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes

    No full text
    The slow kinetics of G protein-activated K+ (GIRK) channels expressed in Xenopus oocytes were studied in single-channel, inside-out membrane patches. Channels formed by GIRK1 plus GIRK4 subunits, which are known to form the cardiac acetylcholine (ACh)-activated GIRK channel (KACh), were activated by a near-saturating dose of G protein βγ subunits (Gβγ; 20 nM).The kinetic parameters of the expressed GIRK1/4 channels were similar to those of cardiac KACh. GIRK1/4 channels differed significantly from channels formed by GIRK1 with the endogenous oocyte subunit GIRK5 (GIRK1/5) in some of their kinetic parameters and in a 3-fold lower open probability, Po. The unexpectedly low Po (0.025) of GIRK1/4 was due to the presence of closures of hundreds of milliseconds; the channel spent ∟90 % of the time in the long closed states.GIRK1∟4 channels displayed a clear modal behaviour: on a time scale of tens of seconds, the Gβγ-activated channels cycled between a low-Po mode (Po of about 0.0034) and a bursting mode characterized by an ∟30-fold higher Po and a different set of kinetic constants (and, therefore, a different set of channel conformations). The available evidence indicates that the slow modal transitions are not driven by binding and unbinding of Gβγ.The GTPγS-activated Gιi1 subunit, previously shown to inhibit GIRK channels, substantially increased the time spent in closed states and apparently shifted the channel to a mode similar, but not identical, to the low-Po mode.This is the first demonstration of slow modal transitions in GIRK channels. The detailed description of the slow gating kinetics of GIRK1∟4 may help in future analysis of mechanisms of GIRK gating

    SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5

    No full text
    The voltage-gated potassium (Kv) channel Kv1.5 mediates the I(Kur) repolarizing current in human atrial myocytes and regulates vascular tone in multiple peripheral vascular beds. Understanding the complex regulation of Kv1.5 function is of substantial interest because it represents a promising pharmacological target for the treatment of atrial fibrillation and hypoxic pulmonary hypertension. Herein we demonstrate that posttranslational modification of Kv1.5 by small ubiquitin-like modifier (SUMO) proteins modulates Kv1.5 function. We have identified two membrane-proximal and highly conserved cytoplasmic sequences in Kv1.5 that conform to established SUMO modification sites in transcription factors. We find that Kv1.5 interacts specifically with the SUMO-conjugating enzyme Ubc9 and is a target for modification by SUMO-1, -2, and -3 in vivo. In addition, purified recombinant Kv1.5 serves as a substrate in a minimal in vitro reconstituted SUMOylation reaction. The SUMO-specific proteases SENP2 and Ulp1 efficiently deconjugate SUMO from Kv1.5 in vivo and in vitro, and disruption of the two identified target motifs results in a loss of the major SUMO-conjugated forms of Kv1.5. In whole-cell patch-clamp electrophysiological studies, loss of Kv1.5 SUMOylation, by either disruption of the conjugation sites or expression of the SUMO protease SENP2, leads to a selective ≈15-mV hyperpolarizing shift in the voltage dependence of steady-state inactivation. Reversible control of voltage-sensitive channels through SUMOylation constitutes a unique and likely widespread mechanism for adaptive tuning of the electrical excitability of cells
    corecore