178 research outputs found

    Halo Coupling and Cleaning by a Space Charge Resonance in High Intensity Beams

    Full text link
    We show that the difference resonance driven by the space charge pseudo-octupole of high-intensity beams not only couples the beam core emittances; it can also lead to emittance exchange in the beam halo, which is of relevance for beam loss in high intensity accelerators. With reference to linear accelerators the "main resonance" kz/kxy =1 (corresponding to the Montague resonance 2Qx-2Qy=0 in circular accelerators) may lead to such a coupling and transfer of halo between planes. Coupling of transverse halo into the longitudinal plane - or vice versa - can occur even if the core (rms) emittances are exactly or nearly equal. This halo argument justifies additional caution in linac design including consideration of avoiding an equipartitioned design. At the same time, however, this mechanism may also qualify as active dynamical halo cleaning scheme by coupling a halo from the longitudinal plane into the transverse plane, where local scraping is accessible. We present semi-analytical emittance coupling rates and show that previously developed linac stability charts for the core can be extended - using the longitudinal to transverse halo emittance ratio - to indicate additional regions where halo coupling could be of importance.Comment: 8 pages, 11 figures, submitted to Phys. Rev ST Accel. Beam

    The problem of self-consistent particle phase space distributions for periodic focusing channels

    Full text link
    Charged particle beams that remain stationary while passing through a transport channel are represented by ``self-consistent'' phase space distributions. As the starting point, we assume the external focusing forces to act continuously on the beam. If Liouville's theorem applies, an infinite variety of self-consistent particle phase space distributions exists then. The method is reviewed how to determine the Hamiltonian of the focusing system for a given phase space density function. Subsequently, this Hamiltonian is transformed canonically to yield the appropriate Hamiltonian that pertains to a beam passing through a non-continuous transport system. It is shown that the total transverse beam energy is a conserved quantity, if the beam stays rotationally symmetric along the channel. It can be concluded that charged particle beams can be transmitted through periodic solenoid channels without loss of quality. Our computer simulations, presented in the second part of the paper, confirm this result. In contrast, the simulation for a periodic quadrupole channel yields a small but constant growth rate of the rms-emittance.Comment: 31 pages, 12 figure

    Effect of Flame Retardants and Electrolyte Variations on Li-Ion Batteries

    Get PDF
    Lithium-ion batteries are being increasingly used and deployed commercially. Cell-level improvements that address flammability characteristics and thermal runaway are currently being intensively tested and explored. In this study, three additives—namely, lithium oxalate, sodium fumarate and sodium malonate—which exhibit fire-retardant properties are investigated with respect to their incorporation into graphite anodes and their electro/chemical interactions within the anode and the cell material studied. It has been shown that flame-retardant concentrations of up to approximately 20 wt.% within the anode coating do not cause significant capacity degradation but can provide a flame-retardant effect due to their inherent, fire-retardant release of CO2 gas. The flame-retardant-containing layers exhibit good adhesion to the current collector. Their suitability in lithium-ion cells was tested in pouch cells and, when compared to pure graphite anodes, showed almost no deterioration regarding cell capacity when used in moderate (≤20 wt.%) concentrations

    Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria

    Get PDF
    Presently, 2 to 4 days elapse between sampling at infection suspicion and result of microbial diagnostics. This delay for the identification of pathogens causes quite often a late and/or inappropriate initiation of therapy for patients suffering from infections. Bad outcome and high hospitalization costs are the consequences of these currently existing limited pathogen identification possibilities. For this reason, we aimed to apply the innovative method multi-capillary column–ion mobility spectrometry (MCC-IMS) for a fast identification of human pathogenic bacteria by determination of their characteristic volatile metabolomes. We determined volatile organic compound (VOC) patterns in headspace of 15 human pathogenic bacteria, which were grown for 24 h on Columbia blood agar plates. Besides MCC-IMS determination, we also used thermal desorption–gas chromatography–mass spectrometry measurements to confirm and evaluate obtained MCC-IMS data and if possible to assign volatile compounds to unknown MCC-IMS signals. Up to 21 specific signals have been determined by MCC-IMS for Proteus mirabilis possessing the most VOCs of all investigated strains. Of particular importance is the result that all investigated strains showed different VOC patterns by MCC-IMS using positive and negative ion mode for every single strain. Thus, the discrimination of investigated bacteria is possible by detection of their volatile organic compounds in the chosen experimental setup with the fast and cost-effective method MCC-IMS. In a hospital routine, this method could enable the identification of pathogens already after 24 h with the consequence that a specific therapy could be initiated significantly earlier

    Cutaneous HPV23 E6 Prevents p53 Phosphorylation through Interaction with HIPK2

    Get PDF
    Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion

    Transverse self-consistent modeling of a 3D bunch in SIS100 with micromap

    Get PDF
    We present the upgrade of the MICROMAP beam dynamics simulation library to include a 2 1/2 D space charge modeling of a 3D bunch using local slices in z. We discuss the parallelization technique, the performances, several tests and comparison with existing well-established analytical/numerical results in order to validate the code. An application to the SIS 100 synchrotron of the FAIR project at GSI is outlined

    Frequency map analysis of resonances in a nonlinear lattice with space charge

    Get PDF
    Abstract In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse

    Modelling landscape transformation at the Chalcolithic Tripolye mega-site of Maidanetske (Ukraine): Wood demand and availability

    Get PDF
    Wood was a crucial resource for prehistoric societies, for instance, as timber for house construction and as fuel. In the case of the exceptionally large Chalcolithic Tripolye ‘mega-sites’ in central Ukraine, thousands of burnt buildings, indicating huge population agglomerations, hint at such a massive use of wood that it raises questions about the carrying capacity of the sensitive forest-steppe environment. In this contribution, we investigate the wood demand for the mega-site of Maidanetske (3990–3640 BCE), as reconstructed based on wood charcoal data, wood imprints on daub and the archaeomagnetometry-based settlement plan. We developed a regional-scale model with a fuzzy approach and applied it in order to simulate the potential distribution and extent of woodlands before and after Chalcolithic occupation. The model is based upon the reconstructed ancient land surface, soil information derived from cores and the potential natural woodland cover reconstructed based on the requirements of the prevailing ancient tree species. Landscape scenarios derived from the model are contrasted and cross-checked with the archaeological empirical data. We aim to understand whether the demand for wood triggered the site development. Did deforestation and consequent soil degradation and lack of resources initiate the site’s abandonment? Or, alternatively, did the inhabitants develop sustainable woodland management strategies? Starting from the case study of Maidanetske, this study provides estimates of the extent of human impact on both carrying capacity and landscape transformations in the sensitive transitional foreststeppe environment. Overall, the results indicate that the inhabitants of the Chalcolithic site did not suffer from a significant shortage in the wood resource at any time of inhabitation in the contexts of the different scenarios provided by the model. An exception is given by the phase of maximum house construction and population within a scenario of dry climatic conditions

    The LIFEdb database in 2006

    Get PDF
    LIFEdb () integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression (‘Electronic Northern’) of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface
    corecore