1,407 research outputs found
Mitigating Gender Bias in Machine Learning Data Sets
Artificial Intelligence has the capacity to amplify and perpetuate societal
biases and presents profound ethical implications for society. Gender bias has
been identified in the context of employment advertising and recruitment tools,
due to their reliance on underlying language processing and recommendation
algorithms. Attempts to address such issues have involved testing learned
associations, integrating concepts of fairness to machine learning and
performing more rigorous analysis of training data. Mitigating bias when
algorithms are trained on textual data is particularly challenging given the
complex way gender ideology is embedded in language. This paper proposes a
framework for the identification of gender bias in training data for machine
learning.The work draws upon gender theory and sociolinguistics to
systematically indicate levels of bias in textual training data and associated
neural word embedding models, thus highlighting pathways for both removing bias
from training data and critically assessing its impact.Comment: 10 pages, 5 figures, 5 Tables, Presented as Bias2020 workshop (as
part of the ECIR Conference) - http://bias.disim.univaq.i
How to correct small quantum errors
The theory of quantum error correction is a cornerstone of quantum
information processing. It shows that quantum data can be protected against
decoherence effects, which otherwise would render many of the new quantum
applications practically impossible. In this paper we give a self contained
introduction to this theory and to the closely related concept of quantum
channel capacities. We show, in particular, that it is possible (using
appropriate error correcting schemes) to send a non-vanishing amount of quantum
data undisturbed (in a certain asymptotic sense) through a noisy quantum
channel T, provided the errors produced by T are small enough.Comment: LaTeX2e, 23 pages, 6 figures (3 eps, 3 pstricks
Developing sexual competence? Exploring strategies for the provision of effective sexualities and relationships education
School-based sexualities and relationships education (SRE) offers one of the most promising means of improving young people's sexual health through developing 'sexual competence'. In the absence of evidence on whether the term holds the same meanings for young people and adults (e.g. teachers, researchers, policy-makers), the paper explores 'adult' notions of sexual competence as construed in research data and alluded to in UK Government guidance on SRE, then draws on empirical research with young people on factors that affect the contexts, motivations and outcomes of sexual encounters, and therefore have implications for sexual competence. These data from young people also challenge more traditional approaches to sexualities education in highlighting disjunctions between the content of school-based input and their reported sexual experience. The paper concludes by considering the implications of these insights for developing a shared notion of what SRE is trying to achieve and suggestions for recognition in the content and approaches to SRE.</p
Risk prediction model for knee pain in the Nottingham Community: a Bayesian modeling approach
Background: 25% of the British population over the age of 50 experience knee pain. It can limit physical ability, cause distress and bears significant socioeconomic costs. Knee pain, not knee osteoarthritis (KOA) is the all to common malady. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiaitve (OAI) Cohort.
Methods: 1822 participants at risk for knee pain from the Nottingham community were followed up for 12 years. Of this cohort, 2/3 (n=1203) were used to develop the risk prediction model and 1/3 (n=619) were used to validate the model. Incident knee pain was defined as pain on most days for at least one month in the past 12 months. Predictors were age, gender, body mass index (BMI), pain elsewhere, prior knee injury and knee alignment. Bayesian logistic regression model was used to determine the probability of an odds ratio >1. The Hosmer-Lemeshow x2 statistic (HLS) was used for calibration and receiver operator characteristics (ROC) was used for discrimination. The OAI cohort was used to examine the performance of the model in a secondary care population.
Results: A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration with HLS of 7.17 (p=0.52) and moderate discriminative abilities (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p<0.01) and poor discriminative ability (ROC 0.54) in the OAI secondary care dataset.
Conclusion: This is the first risk prediction model for knee pain, irrespective of underlying structural changes of KOA, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in a hospital derived cohort and may provide a convenient tool for primary care to predict the risk of knee pain in the general population
The night-sky at the Calar Alto Observatory
We present a characterization of the main properties of the night-sky at the
Calar Alto observatory for the time period between 2004 and 2007. We use
optical spectrophotometric data, photometric calibrated images taken in
moonless observing periods, together with the observing conditions regularly
monitored at the observatory, such as atmospheric extinction and seeing. We
derive, for the first time, the typical moonless night-sky optical spectrum for
the observatory. The spectrum shows a strong contamination by different
pollution lines, in particular from Mercury lines, which contribution to the
sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag
and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the
moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25
mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a
particularly dark site for optical observations up to the I-band. The fraction
of astronomical useful nights at the observatory is ~70%, with a ~30% of
photometric nights. The typical extinction at the observatory is k_V~0.15 mag
in the Winter season, with little dispersion. In summer the extinction has a
wider range of values, although it does not reach the extreme peaks observed at
other sites. The median seeing for the last two years (2005-6) was ~0.90",
being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude
in general that after 26 years of operations Calar Alto is still a good
astronomical site, being a natural candidate for future large aperture optical
telescopes.Comment: 16 pages, 5 figures, accepted for publishing in the Publications of
Astronomical Society of the Pacific (PASP
Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)
International audienceThe design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC) instrument and a GC instrument for formaldehyde detection; and NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and measurements of the blacklamp flux have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1) high precision kinetics investigations over a range of atmospheric conditions; (2) detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3) field instrument intercomparison, calibration, development, and investigations of instrument response under a range of atmospheric conditions
A Multi-Platform Flow Device for Microbial (Co-) Cultivation and Microscopic Analysis
Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM) competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-)culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms
Damage and vulnerability analysis of URM churches after the Canterbury earthquake sequence 2010-2011
The Canterbury earthquake sequence, in 2010-2011, has highlighted once again the vulnerability ofmonumental structures, in particular churches, and the importance of reducing their risk from an economic, cultural and social point of view. Within this context, detailed analysis is reported of the earthquake-induced damage to a stock of 48 unreinforcedmasonry churches located in the Canterbury Region and the vulnerability analysis of a wider stock of 293 churches located all around New Zealand. New tools were developed forthe assessmentof New Zealand churches. The computation of a new damage grade isproposed, assessed as a proper combination of the damage level to each macroelement, as a step towards the definition of a New Zealand specific damage survey form. Several vulnerability indicators were selected, which are related to easily detectable structural details and geometric dimensions. The collection of such data for the larger set of churches (293) constitutes a useful basis for evaluating the potential impact of future seismic event
Tema Con Variazioni: Quantum Channel Capacity
Channel capacity describes the size of the nearly ideal channels, which can
be obtained from many uses of a given channel, using an optimal error
correcting code. In this paper we collect and compare minor and major
variations in the mathematically precise statements of this idea which have
been put forward in the literature. We show that all the variations considered
lead to equivalent capacity definitions. In particular, it makes no difference
whether one requires mean or maximal errors to go to zero, and it makes no
difference whether errors are required to vanish for any sequence of block
sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl
- …