165 research outputs found

    Enhancement of forward suppression begins in the ventral cochlear nucleus.

    Get PDF
    A neuronŚłs response to a sound can be suppressed by the presentation of a preceding sound. It has been suggested that this suppression is a direct correlate of the psychophysical phenomenon of forward masking, however, forward suppression, as measured in the responses of the auditory nerve, was insufficient to account for behavioural performance. In contrast the neural suppression seen in the inferior colliculus and auditory cortex was much closer to psychophysical performance. In anaesthetised guinea-pigs, using a physiological two-interval forced-choice threshold tracking algorithm to estimate suppressed (masked) thresholds, we examine whether the enhancement of suppression can occur at an earlier stage of the auditory pathway, the ventral cochlear nucleus (VCN). We also compare these responses with the responses from the central nucleus of the inferior colliculus (ICc) using the same preparation. In both nuclei, onset-type neurons showed the greatest amounts of suppression (16.9-33.5dB) and, in the VCN, these recovered with the fastest time constants (14.1-19.9ms). Neurons with sustained discharge demonstrated reduced masking (8.9-12.1dB) and recovery time constants of 27.2-55.6ms. In the VCN the decrease in growth of suppression with increasing suppressor level was largest for chopper units and smallest for onset-type units. The threshold elevations recorded for most unit types are insufficient to account for the magnitude of forward masking as measured behaviourally, however, onset responders, in both the cochlear nucleus and inferior colliculus demonstrate a wide dynamic range of suppression, similar to that observed in human psychophysics.This work was supported by Wellcome Trust and BBSRC Project Grants to IMW and first presented in preliminary form by Ingham et al. (2006b). We thank Elinor Gunning and Catherine Slattery for their help and input during pilot experiments and Mark Sayles for help in data collection in later experiments.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.brainres.2016.02.04

    Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation.

    Get PDF
    Both adjuvants and focal ablation can alter the local innate immune system and trigger a highly effective systemic response. Our goal is to determine the impact of these treatments on directly treated and distant disease and the mechanisms for the enhanced response obtained by combinatorial treatments. Methods: We combined RNA-sequencing, flow cytometry and TCR-sequencing to dissect the impact of immunotherapy and of immunotherapy combined with ablation on local and systemic immune components. Results: With administration of a toll-like receptor agonist agonist (CpG) alone or CpG combined with same-site ablation, we found dramatic differences between the local and distant tumor environments, where the directly treated tumors were skewed to high expression of F4/80, Cd11b and Tnf and the distant tumors to enhanced Cd11c, Cd3 and Ifng. When ablation was added to immunotherapy, 100% (n=20/20) of directly treated tumors and 90% (n=18/20) of distant tumors were responsive. Comparing the combined ablation-immunotherapy treatment to immunotherapy alone, we find three major mechanistic differences. First, while ablation alone enhanced intratumoral antigen cross-presentation (up to ~8% of CD45+ cells), systemic cross-presentation of tumor antigen remained low. Combining same-site ablation with CpG amplified cross-presentation in the draining lymph node (~16% of CD45+ cells) compared to the ablation-only (~0.1% of CD45+ cells) and immunotherapy-only cohorts (~10% of CD45+ cells). Macrophages and DCs process and present this antigen to CD8+ T-cells, increasing the number of unique T-cell receptor rearrangements in distant tumors. Second, type I interferon (IFN) release from tumor cells increased with the ablation-immunotherapy treatment as compared with ablation or immunotherapy alone. Type I IFN release is synergistic with toll-like receptor activation in enhancing cytokine and chemokine expression. Expression of genes associated with T-cell activation and stimulation (Eomes, Prf1 and Icos) was 27, 56 and 89-fold higher with ablation-immunotherapy treatment as compared to the no-treatment controls (and 12, 32 and 60-fold higher for immunotherapy-only treatment as compared to the no-treatment controls). Third, we found that the ablation-immunotherapy treatment polarized macrophages and dendritic cells towards a CD169 subset systemically, where CD169+ macrophages are an IFN-enhanced subpopulation associated with dead-cell antigen presentation. Conclusion: While the local and distant responses are distinct, CpG combined with ablative focal therapy drives a highly effective systemic immune response

    Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals

    Get PDF
    Purpose: The effects of low-volume interval and continuous ‘all-out’ cycling, matched for total exercise duration, on mitochondrial and angiogenic cell signalling was investigated in trained individuals. Methods: In a repeated measures design, 8 trained males ((Formula presented.), 57 ± 7 ml kg−1 min−1) performed two cycling exercise protocols; interval (INT, 4 × 30 s maximal sprints interspersed by 4 min passive recovery) or continuous (CON, 2 min continuous maximal sprint). Muscle biopsies were obtained before, immediately after and 3 h post-exercise. Results: Total work was 53 % greater (P = 0.01) in INT compared to CON (71.2 ± 7.3 vs. 46.3 ± 2.7 kJ, respectively). Phosphorylation of AMPKThr172 increased by a similar magnitude (P = 0.347) immediately post INT and CON (1.6 ± 0.2 and 1.3 ± 0.3 fold, respectively; P = 0.011), before returning to resting values at 3 h post-exercise. mRNA expression of PGC-1α (7.1 ± 2.1 vs. 5.5 ± 1.8 fold; P = 0.007), VEGF (3.5 ± 1.2 vs. 4.3 ± 1.8 fold; P = 0.02) and HIF-1α (2.0 ± 0.5 vs. 1.5 ± 0.3 fold; P = 0.04) increased at 3 h post-exercise in response to INT and CON, respectively; the magnitude of which were not different between protocols. Conclusions: Despite differences in total work done, low-volume INT and CON ‘all-out’ cycling, matched for exercise duration, provides a similar stimulus for the induction of mitochondrial and angiogenic cell signalling pathways in trained skeletal muscle

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Get PDF
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Full text link
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X‐linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg^{tm1Wbrg}), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno‐associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing

    Get PDF
    WBP2 encodes the WW domain-binding protein 2 that acts as a transcriptional coactivator for estrogen receptor a (ESR1) and progesterone receptor (PGR). We reported that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse, as well as in two deaf children, each carrying two different variants in the WBP2 gene. The earliest abnormality we detect in Wbp2-deficient mice is a primary defect at inner hair cell afferent synapses. This study defines a new gene involved in the molecular pathway linking hearing impairment to hormonal signalling and provides new therapeutic targets

    Mouse screen reveals multiple new genes underlying mouse and human hearing loss.

    Get PDF
    Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities
    • 

    corecore