15 research outputs found

    Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    Get PDF
    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection

    No full text
    Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15 Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25 Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior
    corecore