518 research outputs found
An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors.
BACKGROUND: Malaria rapid diagnostic tests (RDTs) can produce false positive (FP) results in patients with human African trypanosomiasis and rheumatoid factor (RF), but specificity against other infectious agents and immunological factors is largely unknown. Low diagnostic specificity caused by cross-reactivity may lead to over-estimates of the number of malaria cases and over-use of antimalarial drugs, at the cost of not diagnosing and treating the true underlying condition. METHODS: Data from the WHO Malaria RDT Product Testing Programme was analysed to assess FP rates of 221 RDTs against four infectious agents (Chagas, dengue, Leishmaniasis and Schistosomiasis) and four immunological factors (anti-nuclear antibody, human anti-mouse antibody (HAMA), RF and rapid plasma regain). Only RDTs with a FP rate against clean negative samples less than 10% were included. Paired t-tests were used to compare product-specific FP rates on clean negative samples and samples containing non-Plasmodium infectious agents and immunological factors. RESULTS: Forty (18%) RDTs showed no FP results against any tested infectious agent or immunological factor. In the remaining RDTs significant and clinically relevant increases in FP rates were observed for samples containing HAMA and RF (P<0.001). There were significant correlations between product-matched FP rates for RF and HAMA on all RDT test bands (P<0.001), and FP rates for each infectious agent and immunological factor were also correlated between test bands of combination RDTs (Pâ¤0.002). CONCLUSIONS: False positive results against non-Plasmodium infectious agents and immunological factors does not appear to be a universal property of malaria RDTs. However, since many malaria RDTs have elevated FP rates against HAMA and RF positive samples practitioners may need to consider the possibility of false positive results for malaria in patients with conditions that stimulate HAMA or RF
Potent Phototoxicity of Marine Bunker Oil to Translucent Herring Embryos after Prolonged Weathering
Pacific herring embryos (Clupea pallasi) spawned three months following the Cosco Busan bunker oil spill in San Francisco Bay showed high rates of late embryonic mortality in the intertidal zone at oiled sites. Dead embryos developed to the hatching stage (e.g. fully pigmented eyes) before suffering extensive tissue deterioration. In contrast, embryos incubated subtidally at oiled sites showed evidence of sublethal oil exposure (petroleum-induced cardiac toxicity) with very low rates of mortality. These field findings suggested an enhancement of oil toxicity through an interaction between oil and another environmental stressor in the intertidal zone, such as higher levels of sunlight-derived ultraviolet (UV) radiation. We tested this hypothesis by exposing herring embryos to both trace levels of weathered Cosco Busan bunker oil and sunlight, with and without protection from UV radiation. Cosco Busan oil and UV co-exposure were both necessary and sufficient to induce an acutely lethal necrotic syndrome in hatching stage embryos that closely mimicked the condition of dead embryos sampled from oiled sites. Tissue levels of known phototoxic polycyclic aromatic compounds were too low to explain the observed degree of phototoxicity, indicating the presence of other unidentified or unmeasured phototoxic compounds derived from bunker oil. These findings provide a parsimonious explanation for the unexpectedly high losses of intertidal herring spawn following the Cosco Busan spill. The chemical composition and associated toxicity of bunker oils should be more thoroughly evaluated to better understand and anticipate the ecological impacts of vessel-derived spills associated with an expanding global transportation network
A comparative study of adhesion of melanoma and breast cancer cells to blood and lymphatic endothelium
Background: Lymphovascular invasion (LVI) is an important step in the metastatic cascade; tumor cell migration
and adhesion to blood and lymphatic vessels is followed by invasion through the vessel wall and subsequent
systemic spread. Although primary breast cancers and melanomas have rich blood vascular networks, LVI is
predominately lymphatic in nature. Whilst the adhesion of tumor cells to blood endothelium has been extensively
investigated, there is a paucity of information on tumor cell adhesion to lymphatic endothelium.
Methods and Results: Breast cancer (MDA-MB-231 and MCF7) and melanoma (MeWo and SKMEL-30) cell
adhesion to lymphatic (hTERT-LEC and HMVEC dLy Neo) and blood (HUVEC and hMEC-1) endothelial cells
were assessed using static adhesion assays. The effect of inflammatory conditions, tumor necrosis factor-a
(TNF-a) stimulation of endothelial and tumor cells, on the adhesive process was also examined. In addition,
the effects of TNF-a stimulation on tumor cell migration was investigated using haplotaxis (scratch wound)
assays. Breast cancer and melanoma cells exhibited higher levels of adhesion to blood compared to lymphatic
endothelial cells ( p < 0.001). TNF-a stimulation of endothelial cells, or of tumor cells alone, did not significantly
alter tumorâendothelial cell adhesion or patterns.When both tumor and endothelial cells were stimulated with
TNF-a, a significant increase in adhesion was observed ( p < 0.01), which was notably higher in the lymphatic
cell models ( p < 0.001). TNF-a-stimulation of all tumor cell lines significantly increased their migration rate
( p < 0.01).
Conclusions: Results suggest that metastasis resultant from lymphatic vessel-tumor cell adhesion may be
modulated by cytokine stimulation, which could represent an important therapeutic target in breast cancer and
melanoma
Local modulation of the Wnt/βâcatenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebroâcostoâmandibular syndrome
Ribs are seldom affected by developmental disorders, however, multiple defects in rib structure are observed in the spliceosomal disease cerebroâcostoâmandibular syndrome (CCMS). These defects include rib gaps, found in the posterior part of the costal shaft in multiple ribs, as well as missing ribs, shortened ribs and abnormal costotransverse articulations, which result in inadequate ventilation at birth and high perinatal mortality. The genetic mechanism of CCMS is a lossâofâfunction mutation in SNRPB, a component of the major spliceosome, and knockdown of this gene in vitro affects the activity of the Wnt/βâcatenin and bone morphogenic protein (BMP) pathways. The aim of the present study was to investigate whether altering these pathways in vivo can recapitulate rib gaps and other rib abnormalities in the model animal. Chick embryos were implanted with beads soaked in Wnt/βâcatenin and BMP pathway modulators during somitogenesis, and incubated until the ribs were formed. Some embryos were harvested in the preceding days for analysis of the chondrogenic marker Sox9, to determine whether pathway modulation affected somite patterning or chondrogenesis. Wnt/βâcatenin inhibition manifested characteristic rib phenotypes seen in CCMS, including rib gaps (P < 0.05) and missing ribs (P < 0.05). BMP pathway activation did not cause rib gaps but yielded missing rib (P < 0.01) and shortened rib phenotypes (P < 0.05). A strong association with vertebral phenotypes was also noted with BMP4 (P < 0.001), including scoliosis (P < 0.05), a feature associated with CCMS. Reduced expression of Sox9 was detected with Wnt/βâcatenin inhibition, indicating that inhibition of chondrogenesis precipitated the rib defects in the presence of Wnt/βâcatenin inhibitors. BMP pathway activators also reduced Sox9 expression, indicating an interruption of somite patterning in the manifestation of rib defects with BMP4. The present study demonstrates that local inhibition of the Wnt/βâcatenin and activation of the BMP pathway can recapitulate rib defects, such as those observed in CCMS. The balance of Wnt/βâcatenin and BMP in the somite is vital for correct rib morphogenesis, and alteration of the activity of these two pathways in CCMS may perturb this balance during somite patterning, leading to the observed rib defects
Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source
This paper deals with the long-time behavior of solutions of nonlinear
reaction-diffusion equations describing formation of morphogen gradients, the
concentration fields of molecules acting as spatial regulators of cell
differentiation in developing tissues. For the considered class of models, we
establish existence of a new type of ultra-singular self-similar solutions.
These solutions arise as limits of the solutions of the initial value problem
with zero initial data and infinitely strong source at the boundary. We prove
existence and uniqueness of such solutions in the suitable weighted energy
spaces. Moreover, we prove that the obtained self-similar solutions are the
long-time limits of the solutions of the initial value problem with zero
initial data and a time-independent boundary source
Effect-Directed Analysis of Municipal Landfill Soil Reveals Novel Developmental Toxicants in the Zebrafish Danio rerio
Effect-directed analysis (EDA) is an approach used to identify (unknown) contaminants in complex samples which cause toxicity, using a combination of biology and chemistry. The goal of this work was to apply EDA to identify developmental toxicants in soil samples collected from a former municipal landfill site. Soil samples were extracted, fractionated, and tested for developmental effects with an embryotoxicity assay in the zebrafish Danio rerio. Gas chromatograph mass selective detection (GC-MSD) chemical screening was used to reveal candidate developmental toxicants in fractions showing effects. In a parallel study, liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry was also applied to one polar subfraction (Hoogenboom et al. J. Chromatogr. A2009, 1216, 510-519). EDA resulted in the identification of a number of previously unknown developmental toxicants, which were confirmed to be present in soil by GC-MS. These included 11H-benzo[b]fluorene, 9-methylacridine, 4-azapyrene, and 2-phenylquinoline, as well as one known developmental toxicant (retene). This work revealed the presence of novel contaminants in the environment that may affect vertebrate development, which are not subject to monitoring or regulation under current soil quality assessment guidelines. Š 2011 American Chemical Society
Functional divergence in the role of N-linked glycosylation in smoothened signaling
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs GÎąi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through GÎąi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice
- âŚ