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7School of Physiology, Pharmacology and Neuroscience, Bristol Heart Institute, University of Bristol, Bristol, BS2 8HW, UK
8Institute of Marine Research, PO Box 1870 Nordes NO-5871, Bergen, Norway

Edited by: Ian Forsythe & Livia Hool

Abstract Air pollution is associated with detrimental effects on human health, including
decreased cardiovascular function. However, the causative mechanisms behind these effects have
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yet to be fully elucidated. Here we review the current epidemiological, clinical and experimental
evidence linking pollution with cardiovascular dysfunction. Our focus is on particulate matter
(PM) and the associated low molecular weight polycyclic aromatic hydrocarbons (PAHs) as key
mediators of cardiotoxicity. We begin by reviewing the growing epidemiological evidence linking
air pollution to cardiovascular dysfunction in humans. We next address the pollution-based
cardiotoxic mechanisms first identified in fish following the release of large quantities of PAHs into
the marine environment from point oil spills (e.g. Deepwater Horizon). We finish by discussing
the current state of mechanistic knowledge linking PM and PAH exposure to mammalian cardio-
vascular patho-physiologies such as atherosclerosis, cardiac hypertrophy, arrhythmias, contractile
dysfunction and the underlying alterations in gene regulation. Our aim is to show conservation
of toxicant pathways and cellular targets across vertebrate hearts to allow a broad framework of
the global problem of cardiotoxic pollution to be established. AhR; Aryl hydrocarbon receptor.
Dark lines indicate topics discussed in this review. Grey lines indicate topics reviewed elsewhere.
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Abstract figure legend Polycyclic aromatic hydrocarbons are common in both air and aquatic pollution. Exposure to
these pollutants can lead to PAH accumulation in the body and cause cardiovascular dysfunction via a number of direct
and indirect mechanisms. PAH exposure is associated with arrhythmias, hypertrophy, atherosclerosis and developmental
toxicity (among others). This review discusses current evidence linking PAH-based pollution and cardiovascular disease
in vertebrates.

Abbreviations AA, arachidonic acid; AhR, aryl hydrocarbon receptor; AP, action potential; APD, Action potential
duration; ANP, atrial natriuretic protein; BaP, Benzo[a]pyrene; BMP10, bone morphogenetic protein 10; BNP,
brain natriuretic protein; CdC42, cell division control protein 42 homolog; CREB, cAMP response element-binding
protein; CVD/CVS, cardiovascular disease/cardiovascular system; CYP1A1/1B1, cytochrome P450 1A1/1B1; DCM,
dilated cardiomyopathy; DEP, diesel exhaust particles; DWH, deepwater horizon; EC, excitation-contraction; ERG,
Ether-à-go-go-related gene K+ channel; HCAEC, human coronary artery endothelial cells; HUVEC, human umbilical
vascular endothelial cells; hiPSC, human induced pluripotent stem cells; IUPS, international union of physiological
sciences; LTCC, L-type calcium channels; MMP-9, matrix metalloproteinase-9; NFAT, nuclear factor of activated T-cells;
PAH, polycyclic aromatic hydrocarbons; Phe, phenanthrene; PLA2, phospholipase A2; PM, particulate matter; ROFA,
residual oil fly ash; SERCA, sarcoplasmic reticulum calcium ATPase; SR, sarcoplasmic reticulum; Tbx5, T-box 5; TCDD,
2,3,7,8-Tetrachlorodibenzo-p-dioxin; TGF-β, transforming growth factor-β.

Introduction

The disease burden from ambient air pollution is
becoming increasingly apparent, with a host of recent
studies drawing close association between pollution levels
and reduced life expectancy (Hoek et al. 2013; Lelieveld
et al. 2019). An estimated 4.2 million premature human
deaths worldwide are attributed to ambient air pollution
(World Health Organization (WHO), 2018). Over 90%
of the population live in areas where air pollution is above
the World Health Organization’s guidelines and, with
air pollution levels still on the rise in many countries,
this threat is ever growing (WHO, 2018). Air pollution
is derived from a vast range of sources, but combustion
of fossil fuels represents a significant proportion of the
pollutants known to be detrimental to health. In parallel,
industrial pollutant discharge and natural oil seeps in
aquatic ecosystems, together with observations from
disastrous oil spills, have demonstrated the considerable
damage that other forms of fossil fuel pollution can

impose on both aquatic life and human livelihood (Smith
& Levy, 1990; Beyer et al. 1998; Naes & Oug, 1998; Zakaria
et al. 2002; Pampanin & Sydnes, 2013; Stogiannidis &
Laane, 2015).

What is becoming increasingly evident is the
detrimental effect of fossil fuel-derived pollution on the
cardiovascular system (CVS). Despite the lung being
the major entry point into the body and thus the first
target of exposure, numerous epidemiological studies
have shown strong correlations between air pollution
and cardiovascular diseases (CVDs) (Shah et al. 2013;
Franklin et al. 2015). Indeed, mortality attributed to air
pollution’s impact on CVD outweighs mortality due to
impact on respiratory diseases (Cohen et al. 2017).

In fish, the cardiotoxicity of exposure to fossil fuels has
been recognised for several decades. The negative impact
of crude oil exposure on cardiac function was clearly
identified in the years following the 1989 Exxon Valdez
oil spill (Incardona et al. 2009), and a deeper mechanistic
understanding of the cardiotoxic pathways followed the

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2010 Deepwater Horizon (DWH) blowout (Brette et al.
2014, 2017). While there are undoubtedly clear differences
in air pollutants and aquatic environmental pollution (e.g.
physicochemical properties of the pollutants, interaction
between pollutants and the environment, the biology
of the species exposed and the route of exposure), it
has become apparent that parallels exist, especially in
terms of the ability of these pollutants to cause cardio-
vascular toxicity. This review builds on a focus session
at the 2017 International Union of Physiological Sciences
(IUPS) World Congress (http://www.iups.org/) to outline
the current epidemiological, clinical and experimental
evidence by which pollution can impact on the heart and
other aspects of the CVS. Our focus is on the cardiotoxicity
of the lower molecular weight polycyclic aromatic hydro-
carbons (PAHs) as key mediators of these effects. This
review outlines (1) the growing epidemiological evidence
linking air pollution to cardiovascular dysfunction, (2)
the importance of particulate matter (PM) and PAHs
in cardiotoxicity, (3) the key mechanisms of cardio-
toxicity identified in the flurry of fish heart research that
followed the Exxon Valdez and DWH oil spills, and (4)
the current state of mechanistic knowledge linking PAH
exposure to cardiovascular patho-physiologies such as
atherosclerosis, cardiac hypertrophy, arrhythmias, contra-
ctile dysfunction and the underlying alterations in gene
regulation. In this review we draw on studies from humans,
other mammals and fish which collectively form our
current understanding of pollution-based cardiovascular
toxicity. In the final section we discuss the implications
of interspecies diversity for extrapolating risks identified
in aquatic pollution to those of human exposure to air
pollution.

Airborne particulate matter and human health risks

Numerous epidemiological studies have linked air
pollution to cardiovascular morbidity and mortality.
Airborne PM is a key pollutant (in terms of strength,
and in many cases magnitude, of associations) driving
the cardiovascular effects. PM exposure is linked to
cardiac arrhythmias, alterations in heart rate variability,
myocardial infarction, arterial vasoconstriction, increased
blood coagulability, atherosclerosis (vascular plaques),
heart failure and stroke (Mills et al. 2009; Brook et al.
2010; Brook & Brook, 2011; Shah et al. 2013; Franklin et al.
2015; Newby et al. 2015). Atmospheric PM encompasses a
complex mixture of particulates and liquid droplets with a
wide-ranging chemical composition (see Fig. 1; Niemann
et al. 2017; Environmental Protection Agency, 2018). PM is
grouped into three classes based on particle size (Fig. 1B).
Course particles (with a diameter between 2.5 and 10 µm)
tend to be mechanically derived from construction and
demolition, mining, agriculture, tyre fragmentation and
other road dust. Fine (diameter of �2.5 µm; PM2.5) and

ultrafine particles (also known as nanoparticles; diameter
� 0.1 µm) have both natural and anthropogenic sources.
Ultrafine PM and a substantial proportion of PM2.5, are
derived from combustive sources such as motor vehicle
exhaust, industrial burning of coal and fuel oil, cigarette
smoke and residential wood burning. PM2.5 is widely
measured in the environment as an indicator of air
quality. This class of PM is particularly concerning due to
the high penetration deep into the lungs after inhalation
(Lee et al. 2018; and see below) and for the large reactive
surface area of these small particles. Ultrafine PM cannot
presently be routinely measured in the environment, yet
has the potential to be an even greater threat to health due
to the markedly greater surface area these particles have
and that they may gain access (i.e. translocate) to other
organs of the body (Donaldson et al. 2013).

Positive associations between PM2.5 levels and
incidences of stroke are evident in areas with increased
industrialization such as India, China and Africa (Shah
et al. 2015; Lee et al. 2018). Two long-term studies
based in the USA in 2007 (Miller et al. 2007) and 2011
(Lipsett et al. 2011), identified a significant increase
in stroke incidence for every 10 µg m−3 increase in
PM2.5 levels (35% and 19%, respectively). Similarly, a
�20% increase in stroke incidence has been observed in
various European countries which met their air quality
standards, indicating that current standards may not
be sufficient (Lee et al. 2018). Concern for current air
quality standards was bolstered by Aung et al. (2018),
who showed correlations between UK addresses, ambient
air quality data (at levels within current UK air quality
standards) and biventricular dilatation that is suggestive
of detrimental cardiac remodelling.

Short-term exposure to air pollution has also been
associated with severe cardiac complications. A study
in the Greater Boston area found a strong association
between the onset of ischaemic stroke and traffic-related
pollutant exposure 12—14 h prior (Wellenius et al.
2012). Associations have even been found between
the onset of myocardial infarctions 2 h after high PM
exposure associated with traffic (Peters et al. 2001).
Daily variations in pollutant levels are also associated
with increases in hospital admissions for ischaemic
heart disease, particularly in vulnerable subgroups like
those with accompanying congestive heart failure and
arrhythmias (Mann et al. 2002). It is possible that other
vulnerable groups (e.g. newborns, children, the elderly
and immunocompromised individuals) may also be
particularly susceptible to the impacts of air pollution on
the CVS but epidemiological studies are lacking and calls
for greater focus in this area have been made (Sram et al.
2013; Wittkopp et al. 2016).

There is growing recognition of the effects of indoor air
pollution on health (Lim et al. 2012; WHO, 2014). Indoor
air pollution has arguably a greater diversity of sources

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(e.g. heating, cooking, smoking, moulds, pet dander,
mosquito coils, chemical aerosols, cleaning products,
ingress of outdoor air pollution, and many others), with
marked differences between developed and developing
nations. Similar to outdoor/ambient pollution, PM is the
pollutant of concern, showing strong associations with
CVDs (Mitter et al. 2016). With people spending more
than 80% of their time indoors, and with the ready use of
unclean/inappropriate fuel sources in developing nations,
the true scale of indoor air pollution is likely to come to
prominence in the next decade as research in this area
grows.

Already, the potential impact of pollution has been
substantiated, with Lelieveld et al. recently estimating a
new total excess mortality rate of 659,000 per year due
to air pollution in the 28 countries of the European
Union (Lelieveld et al. 2019), a vast increase from the

400,000 per year currently acknowledged by the European
Environment Agency (Agency, 2019).

Inhaled particles and the cardiovascular system

Despite the considerable evidence linking air pollution and
CVD, the biological mechanisms linking this association
are not fully elucidated. The particulate constituents of
air pollution appear to drive the cardiovascular actions.
Deposition of PM in the lungs depends on particle size
(United States Environmental Protection Agency, 2017).
Course particles are largely deposited in the upper airways
and are then cleared by ciliary action. Fine and ultrafine
particles can reach the lower regions of the lung: the acini,
consisting of respiratory bronchioles, alveolar ducts and
alveoli where gas exchange occurs. Following deposition
on the alveolar walls, fine particles can be cleared with the

Air pollution

Liquids

Gases

Elemental carbon core

Particles

Secondary sulphates and nitrates

Organic carbon species
e.g. phenanthrene and other PAHs

Absorbed soluble and
vaporous hydrocarbons

Hydrated sulphates and nitrates

Redox-active metals

Particle category Diameter (µm)

Course: PM10

Fine: PM2.5

Ultrafine: PM
(nanoparticles)

2.5 – 10.0

<2.5

<0.1

A B

C

Figure 1. Constituents of air pollution
A, air pollution can be broadly characterized into gases, liquids and particles. PAHs can be found in the gaseous
phase of air pollution as well as binding to the particle surface. B, particles can be further classified into size
categories of particulate matter (PM). For perspective, if a human hair has a width of approximately 50 µm
(0.05 mm) then PM10 encompasses particles with a diameter below a fifth of this size (<10 µm). Fine PM
(<2.5 µm) would be a quarter of this size, and smaller still, ultrafine (nano) particles a hundredth of the size of
PM10 (<0.1 µm). C, schematic diagram providing an example of the complex composition of a combustion derived
ultrafine (nano) particle, such as a diesel exhaust particle (DEP), a common PM in urban air. The carbon core of DEP is
coated with a diverse range of chemical species including reactive transition metals and polyaromatic hydrocarbons
like phenanthrene. Detail of surface chemicals in C is not to scale. Figure reproduced from Environmental Health
Perspectives with permission from the authors (Stone et al. 2017).

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



J Physiol 598.2 The cardiotoxicity of pollution 231

assistance of alveolar macrophages; however, a proportion
of particulates (especially smaller particles) may evade
capture or may trigger an inflammatory response within
the lungs (Stone et al. 2017). Induction of inflammation
with release of inflammatory mediators and activation
of sensory afferents are likely to be means by which
inhaled PM can induce cardiovascular effects; the former
by passage of inflammatory or oxidative mediators into
blood, and the latter by changes in autonomic function
and neuroendocrine systems (Miller, 2014). Moreover,
urban PM and diesel exhaust particles (DEP; a rich
source of combustion-derived nanoparticles in ambient
air pollution, see Fig. 1C) can directly generate free
radicals from their surface, and through activation of
cellular enzymes induce oxidative stress and inflammation
(Donaldson et al. 2005; Miller et al. 2009; Langrish et al.
2012). Both processes are known to impair vascular
function in (otherwise) healthy blood vessels to promote
disease (Münzel et al. 2018).

The smallest ultrafine nanoparticles (Fig. 1B and C)
appear to be able to pass the alveolar barrier, enter the
pulmonary circulation, and be carried to other regions
of the body. Due to the very small numbers of ultrafine
particles likely to translocate and the difficulty in detecting
these particles systemically, it has been challenging to
conclusively demonstrate that environmental ultrafine
nanoparticles translocate in humans (Nemmar et al.
2002; Mills et al. 2006; Möller et al. 2008). However,
experimental studies using model nanoparticles such as
radiolabelled carbon or gold nanoparticles have robustly
demonstrated that this pathway occurs in rodents (Geiser
& Kreyling, 2010) and now recently in humans (Miller
et al. 2017a,b). The translocation pathway is of importance
as it provides a biological basis that could account for
the widespread effects of inhaled PM across the CVS,
and elsewhere in the body (Raftis & Miller, 2019). Thus
while changes in autonomic function are likely to play a
major role in the arrhythmogenic action of PM (Robertson
et al. 2014; Buteau & Goldberg, 2016) and systemic
inflammation will most likely exacerbate existing disease
processes, the entry of PM into the systemic circulation
expands the diversity of routes, targets and time course
by which inhaled PM deregulates cardiovascular homeo-
stasis. Access of particles to the blood also provides a means
by which inhaled PM and its constituent surface chemicals
can directly interact with the CVS.

PAHs in air pollution

Combustion-derived PM is predominantly carbon based;
however, it has a complex composition. A central particle
core is composed of both organic and elemental carbon (as
well as other substances such as sulphates and nitrates).
However, the particle surface is coated with a range of
different chemical entities that include organic carbon

species such as PAHs, as well as reactive metal species
(e.g. iron, copper, nickel; Fig. 1C). The chemicals within
this surface mixture, in particular the PAHs, are believed
to greatly influence PM biological activity, and recent
evidence links the cardiovascular toxicity of PM2.5 to its
organic carbon component (Miller et al. 2012) in humans
(Mills et al. 2011).

PAHs are a family of ubiquitous contaminants which
can bind to particulates or can form small airborne
particles in the gaseous phase of air pollution themselves.
Studies in animals show exposure to DEP, but not ultrafine
polystyrene particles, caused a pronounced pulmonary
inflammatory response (Nemmar et al. 2004). Exposure
to residual oil fly ash (ROFA) but not ‘clean’ black carbon,
produced electrocardiographic changes (Wellenius et al.
2002), indicating that simply the physical presence of a
(relatively inert) particle core is insufficient for a cardio-
vascular pathophysiological response. These studies are
consistent with the bioavailability of PAHs in PM and
in vehicle emissions. Indeed, respiratory epithelial cells
exposed to PM2.5 take up PAHs (Penn et al. 2005),
and in the case of the smallest sized particles in PM2.5,
these may be transported across the alveolar epithelium
and into the systemic circulation un-metabolized (Gerde
et al. 2001). The transport of PAHs to the heart from
the pulmonary circulation would occur before significant
hepatic metabolism (Incardona et al. 2005).

Phenanthrene. Each PAH compound contains two or
more fused benzene rings (see right hand column in
Fig. 2). There are two main sources of PAHs: (1) pyrogenic
sources which involve anoxic or low oxygen combustion
of fossil fuels and are dominated by the presence of
larger 4–6 ring PAHs, and (2) petrogenic sources that
include crude oils and associated by-products and consist
primarily of 2–3 ring PAHs. Tricyclic (3-ringed) PAHs,
such as phenanthrene (Phe) and its alkylated homologues
(e.g. dimethylphenanthrene; Fig. 2), are naturally enriched
in crude oil and refined fuels and they are present in most
types of combustive emissions in large quantities (Fig. 2).
Excluding 2-ringed naphthalene, phenanthrenes are the
most abundant PAH family in aquatic environments
impacted by either oil spills or by urban (non-point
source) pollution (Fig. 2A and B), and in urban air (Fig. 2C
and D) (Liu et al. 2001; Naumova et al. 2002; Bi et al.
2003; Tsapakis & Stephanou, 2005; Li et al. 2009; Scholz
et al. 2011; Incardona et al. 2014). PM contains Phe
(Abdel-Shafy & Mansour, 2016) and significant levels of
Phe can be found in the gaseous phase of vehicle exhaust
(Schauer et al. 1999, 2002; Möllmann et al. 2006). Levels of
Phe in London air were reported at 76–82 ng m−3(Halsall
et al. 1994) and �10–150 nmol L−1 in the water of the
Jiulong River Estuary and Western Xiamen Sea in China
(Maskaoui et al. 2002). Therefore, terrestrial animals
(including humans) and fishes come into contact with Phe

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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through diet, drinking, breathing, smoking and through
other routes of environmental exposure (Laurent et al.
2001; Grova et al. 2005; Zhong et al. 2011). Phe is known
to exert direct toxicity in dogs where aerosolized Phe
was rapidly transported into the bloodstream following
inhalation (Gerde et al. 1993). Particle translocation may
also assist the passage of Phe within PM to areas of

susceptibility, given that translocated nanoparticles have
been shown to preferentially accumulate at sites of vascular
disease (Miller et al. 2017a).

While data on human plasma levels of PAHs are sparse,
plasma concentrations of Phe and/or other PAH molecules
can be found at the nanomolar level in animals (Zhong
et al. 2011; Camacho et al. 2012). A recent study of
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Figure 2. Comparison of PAH composition between water and air samples
Composition profiles represent the percentage of the indicated PAHs normalized to the sum total of the measured
set, with ring number and molecular weight increasing to the right. Parent non-alkylated compounds are
denoted with a 0 (e.g. F0, P0), while alkylated compounds (e.g. those with 1 or 2 additional methyl groups)
are indicated by F1, F2, P1, P2, etc. Selected individual structures are shown on the right, with phenanthrene
and its alkylated homologues indicated in purple, the 4-ringed pyrogenic compounds indicated in gold (pyrene
and fluoranthene), and the archetypal carcinogenic 5-ringed PAH benzo(a)pyrene indicated in red. Five sample
sources are shown. A, water from the area of the Gulf of Mexico impacted by the 2010 Deepwater Horizon
oil spill (Incardona et al. 2014); B, passive samplers placed in an urban stream in Seattle (USA) that receives
large quantities of stormwater runoff from nearby roadways (Scholz et al. 2011; J. P. Incardona, unpublished);
C, a total high volume air sample from Guangzhou (China) collected July 2001 by combined glass fibre filter
(GFF) and polyurethane foam (PUF) plug (Bi et al. 2003); D, the mean of 16 total GFF/PUF samples collected
between November 2000 and February 2002 in Heraklion (Greece) (Tsapakis & Stephanou, 2005); E, mean
of quarterly samples collected over the year 2004 using a PM2.5 particle composition monitoring system at a
heavily trafficked urban site in Atlanta, USA (Li et al. 2009). Abbreviations: F, fluorene; P, phenanthrene; ANT,
anthracene; FL, fluoranthene; PY, pyrene; BAA, benz(a)anthracene; C, chrysene; BBF, benzo(b)fluoranthene; BKF,
benzo(k)fluoranthene; BEP, benzo(e)pyrene; BAP, benzo(a)pyrene; PER, perylene; IND, indeno(123-cd)pyrene; DBA,
dibenzanthracene; BZP, benzo(ghi)perylene; nd, not determined.
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maternal blood of pregnant (non-smoker) women and
cord blood of newborns reported Phe concentrations
of 37.61 and 35.32 µg L−1, respectively; a concentration
approximating to 200 nM (Scholz et al. 2011). It is
important to note that Phe, like most tricyclic PAHs, is
highly lipophilic with a logP (octanol/water) coefficient of
�4.4, indicating tissue accumulation of Phe at levels higher
than those observed in plasma (Carls et al. 1999; Heintz
et al. 1999). This was notably shown in studies where tissue
concentrations approximating to 3 µM were reported
(Jacob & Seidel, 2002; Dhananjayan & Muralidharan,
2013), with levels being exacerbated by smoking (363 ng
Phe per cigarette; Severson et al. 1976; Howard et al. 1998).

The aryl hydrocarbon receptor (AhR) and the unique
cardiotoxicity of low molecular weight PAHs. For
many years the toxicology of PAHs was focused
almost exclusively on a single 5-ringed compound,
benzo(a)pyrene (BaP). A dramatic increase in the pre-
valence of skin cancers among coal-tar workers during the
Industrial Revolution led to the identification of BaP as
a metabolically activated chemical carcinogen (Phillips,
1983). Subsequent research showed that BaP activates
an orphan transcription factor later described as the
aryl hydrocarbon receptor (AhR) (Denison et al. 1998).
AhR in turn regulates genes involved in PAH metabolism
(Nebert et al. 2004). When activated, AhR migrates into
the nucleus and binds to a specific sequence within
xenobiotic responsive elements resulting in expression of
xenobiotic metabolising enzymes, including cytochrome
P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1)
(Germolec et al. 1996; Korashy & El-Kadi, 2006). CYPs
have the ability to metabolize PAHs such as BaP into
reactive metabolites which can alkylate macromolecules
and have carcinogenic properties (Denison et al. 1988;
Korashy & El-Kadi, 2006). Interestingly, particles such
as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) which are
produced by organic/diesel combustion also interact with
CYP pathways, and in mammalian embryos can increase
mortality rates and cause severe cardiac hypertrophy
(Walker et al. 1997; Dalton et al. 2001; Ivnitski et al. 2001;
Lin et al. 2001; Kanzawa et al. 2004). Chronic exposure
to TCDD in adults can also increase the incidence of
spontaneous cardiomyopathy (Jokinen et al. 2003).

In developing fish, the larger 5-ringed PAHs cause
developmental cardiotoxicity in a manner similar to
the very potent AhR ligands of the dioxin family
(Incardona, 2017). With these compounds, toxicity is not
linked to CYP1A-mediated metabolism, but results from
inappropriate AhR activation within developing cardio-
myocytes, leading to reduced cardiomyocyte proliferation
and heart malformation (for review, see Incardona, 2017).
However, BaP and similar compounds make up a lower
proportion of the total PAHs in water and air pollution
(see Fig. 2).

Low molecular weight PAHs such as tricyclic Phe have
been found to be weak AhR agonists with little to no
carcinogenic activity (Barron et al. 2004). Thus, these
chemical species were largely ignored through nearly
eight decades of PAH research. However, more recent
studies from fish indicate that not all PAH toxicity can
be attributed to AhR activation (Incardona et al. 2005).
In particular, and as detailed further below, Phe and
complex PAH mixtures found in air and water pollution
cause a functional cardiotoxicity that is independent of
the AhR/CYP1A pathway and independent of cardiac
developmental abnormalities.

Cardiotoxicity of PAHs in fish. The toxicity of tricyclic
(3-ringed) PAHs became apparent from the effects of the
1989 Exxon Valdez oil spill on Pacific herring (Clupea
pallasi) and pink salmon (Oncorhynchus gorbuscha).
At the time of the spill, these fish were the basis of
the largest commercial fisheries in Alaska, and their
near-shore spawning habitats were contaminated by oil.
Field studies identified a malformation syndrome in
herring and salmon embryos and larvae that was linked to
oiled shoreline exposure. Subsequent laboratory studies
associated this syndrome with the uptake of 3-ringed PAHs
(see recent reviews: Incardona & Scholz, 2017, 2018).
Briefly, weathering (i.e., water-washing of oil slicks over
time) increased the proportion of 3-ringed compounds
in the water and also the cardiotoxicity (Carls et al.
1999; Heintz et al. 1999). Subsequent work in zebrafish
demonstrated several key points: First, individual tricyclic
compounds such as fluorene, dibenzothiophene and
Phe produced a malformation syndrome (including
cardiac) that was overtly similar to that from complex
oil-derived mixtures (Incardona et al. 2004). Second, in
contrast to AhR-mediated developmental cardiotoxicity,
defects in cardiac function, observed as abnormalities
in heart rate and rhythm, preceded the onset of heart
malformation. Finally, the complex malformations
observed in non-cardiac structures (e.g. jaw defects,
small eyes, body axis deformations) were all downstream
of reduced cardiac output in developing embryos
(Incardona et al. 2004). Extensive studies have now
demonstrated that PAH mixtures containing nanomolar
concentrations of Phe are bioconcentrated to micromolar
concentrations in fish embryos (Petersen & Kristensen,
1998). Corresponding cardiotoxicity syndromes range
from outright heart failure and larval mortality at the high
end to subtle heart malformation with pathological hyper-
trophy and reduced cardiorespiratory performance at the
low end (Incardona et al. 2004, 2005, 2009). Importantly,
bradycardia and atrioventricular conduction block
observed following Phe exposure in zebrafish embryos
were strongly suggestive of molecular targets involving
AP generation and excitation-contraction (EC) coupling
(Incardona et al. 2004).
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In April 2010, the Deepwater Horizon disaster in
the Gulf of Mexico returned global attention to the
toxicity of crude oil. The blowout, the largest accidental
oil spill in history, released nearly 5 million barrels of
complex mixtures of PAHs into the water over a period
of 87 days. Many commercially important pelagic fish
species were spawning in the Gulf of Mexico during this
event, including bluefin (Thunnus thynnus) and yellowfin
(Thunnus albacares) tunas, and mahi-mahi (Coryphaena
hippurus) (Hazen et al. 2016). In the wake of the Exxon
Valdez oil spill, damage assessment studies following
Deepwater Horizon focused on the deleterious effects of
oil on fish cardiac function across aquatic species, life
stages and levels of biological organization (for review see
Incardona & Scholz, 2018). Results showed oil-exposed
pelagic fishes also had compromised swim performance,
including reductions in maximal sustained swimming
speed and reduced maximal metabolic rate (Mager et al.
2014; Stieglitz et al. 2016; Nelson et al. 2017). Moreover,
relatively short-term whole animal aquatic exposure (24 h)
to crude oil was found to reduce cardiac stroke work
and cardiac output (Nelson et al. 2016; Cox et al.
2017).

PAHs and EC coupling in fish. A detailed mechanistic
understanding of PAH-induced changes in fish cardiac
function came from two papers examining the effects
of crude oil (Brette et al. 2014) and its component
parts (e.g. Phe; Brette et al. 2017) on action potential
(AP) generation and EC coupling in single isolated myo-
cytes from pelagic fish. Consistent with the in vivo
whole-heart effects observed in exposed fishes, these
studies demonstrated that complex mixtures of crude oil,
or Phe in isolation, altered both cellular Ca2+ cycling
and AP waveform (Brette et al. 2014, 2017; see Fig. 3).
The studies revealed that other single PAHs (naphthalene,
fluorene, carbazole, dibenzothiophene and pyrene) did
not alter the amplitude or the time course of the intra-
cellular Ca2+ transient in fish ventricular myocytes (Brette
et al. 2017), and that the potency of the oil-derived
mixture was specifically correlated with the content of
Phe (Brette et al. 2014). In addition to the depressive
effects on Ca2+ cycling, Phe was found to affect membrane
excitability by prolonging action potential duration (APD)
by inhibiting K+ efflux from the cardiomyocyte via the
rapid delayed rectifier K+-current (IKr) (Brette et al. 2014,
2017), analogous to the original observations in zebrafish
embryos (Incardona et al. 2004). The depression of the
Ca2+ transient amplitude and the AP prolongation found
in bluefin tuna myocytes following Phe exposure can be
seen in Fig. 3B and D. Similar effects were also found in
sheep ventricular myocytes following acute Phe exposure,
shown in Fig. 3A and C (Unpublished data). Recently,
such disruptions to EC coupling in the myocyte have been
followed through to contractile failure of cardiac tissue

and abnormal contractile rhythm of the isolated whole
heart in the freshwater indicator species, the brown trout
(Salmo trutta) following acute Phe exposure (Ainerua
et al. 2020). A summary of the known and putative
effects of PAHs on cardiomyocyte EC coupling is given in
Fig. 4A.

Mechanistic link between PAHs and cardiovascular
disease

Mammalian (including human) studies from urban areas
around the world (Shah et al. 2015; Lee et al. 2018)
implicate PM2.5 and its associated tricyclic PAHs in
the induction of cardiac arrhythmias, the exacerbation
of heart failure, the triggering of myocardial infarction
and other atherosclerotic/ischaemic complications (Brook
et al. 2010). Coupled with the mechanistic understanding
of crude oil- and PAH-induced dysfunction in the fish
heart, it is certain that PAHs are pollutants of global
concern. Below we have reviewed the current literature
which mechanistically links PM and/or PAHs and cardio-
toxicity in a range of animal models. Our aim is to show
conservation of toxicant pathways and cellular targets
across vertebrates to allow a broad framework of the
problem to be established.

Atherosclerosis. Atherosclerosis is a vascular disease
where intraluminal fatty plaque build-up causes a
narrowing of the arteries. Rupture of unstable plaques
in specific arteries can lead to thrombotic occlusion of
the artery, triggering a cardiovascular event such as a
heart attack or stroke. Coronary artery disease is now
a leading cause of mortality in the world, affecting 2.3
million people in the UK (British Heart Foundation,
2018). A critical initiating event in the pathogenesis
of atherosclerosis is endothelial cell injury. PAH uptake
through inhalation puts endothelial cells at the forefront
of toxic effects. BaP and other related PAHs have been
found to be atherogenic, inducing vascular injury and
dysfunction possibly through oxidative stress (Dhalla et al.
2000; Miller & Ramos, 2001). Cigarette smoke contains
significant levels of Phe and smoking is a key risk factor
of atherosclerosis and linked to increased endothelial cell
apoptosis (Severson et al. 1976; Howard et al. 1998).
Little work has been carried out on the role of individual
PAHs on the apoptotic cascade (Tai et al. 1990) (i.e.
arachidonic acid (AA) by phospholipase A2 (PLA2));
however, in 2002, Tithof et al. identified the apoptotic
effects of three PAHs – 1-methylanthracene, Phe and BaP
– in human coronary artery endothelial cells (HCAECs)
(Tithof et al. 2002). All three PAHs induced time- and
concentration-dependent release of AA, an event that pre-
cedes the onset of apoptosis. Interestingly, these PAHs
activate three distinct PLA2 isoforms, with Phe specifically
activating the Group VI and acidic calcium-independent
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PLA2 (Tithof et al. 2002). A more recent study (Asweto
et al. 2017), showed that individual PAHs could have
greater toxicological effects on endothelial cells when
combined with silica nanoparticles. BaP was harmless to
human umbilical vascular endothelial cells (HUVECs)
alone, but caused DNA damage, oxidative stress and
apoptosis in the presence of particles (Asweto et al. 2017).
These results suggest that the tissue-specific cytotoxic
effects by individual PAHs and PM warrants further study,
not only in the initial stages of atherosclerosis, but also in
the long-term development and rupture of atherosclerotic
lesions.

Cardiac arrhythmias. Arrhythmias are a broad term
for different types of irregular heartbeats, collectively
experienced by more than 2 million people a year in
the UK (National Health Service, 2018). Although often
innocuous, arrhythmias can be indicative of underlying
cardiac conditions and can precipitate more hazardous
irregularities over time or with various stresses. There
is considerable evidence showing exposure to airborne
PM can affect cardiac rhythm in humans and mammalian
models (Buteau & Goldberg, 2016; COMEAP, 2018). Phe
exposure produces severe arrhythmias in fish, including
bradycardia and AV conduction block (Incardona et al.
2004, 2005). For example, irregular rhythm has been

observed in zebrafish embryos after 72 h of 5 nM Phe
exposure (Zhang et al. 2013). In cats, bradycardia has
been observed following high-dose oral administration
of Phe (Eddy, 1933). The mechanism of Phe action has
been attributed, at least in part, to its direct influence on
the multitude of ion channels involved in the AP and EC
coupling (Figs 3 and 4; Brette et al. 2017).

Phe’s effect on APD is notably detrimental. A
prolongation of the APD and reduction in the Ca2+ trans-
ient amplitude has been observed in several fish species
following Phe exposure (see Fig. 3; Brette et al. 2017).
This prolongation of the APD is due, in large part, to an
inhibition of the rapid delayer rectifier K+ current (IKr),
slowing K+ efflux during repolarization as exemplified
through maximal inhibition of IKr by 25 µM Phe (Brette
et al. 2017; Ainerua et al. 2020). Although this dose is
higher than expected in plasma, tissues levels are expected
to approach micromolar levels (see discussion above). This
is exemplified by bradycardia (50% rate reduction) and
serious fibrillation at nanomolar concentrations of Phe
(0.8–0.16µM) in the hearts of herring embryos (Incardona
et al. 2009). Moreover, halofantrine, an antimalarial drug
that has a similar structure to Phe, also inhibits IKr and
has been associated with acquired long QT syndrome and
Torsades de pointes (a specific type of arrhythmia that can
lead to sudden death) (Wesche et al. 2000). Interestingly,
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Figure 3. The effects of Phe on excitation
contraction coupling
The effect of Phe on the intracellular Ca2+ transient in
sheep ventricular myocytes (25 µM) (A) and fish
(bluefin tuna, 5 µM) ventricular myocytes (B) loaded
with Fluo-4AM and stimulated to contract at 0.5 Hz.
The effect of Phe on the ventricular AP during
whole-cell current clamp in sheep (C) and bluefin tuna
(D) ventricular myocytes. The red lines in both traces
show data recorded during exposure to 25 µM Phe.
The pink line shows the effect of 5 µM Phe exposure
in tuna. No discernible effects were seen at 5 µM in
sheep (not shown). Tuna data are from Brette et al.
2017, with permission from Scientific Reports, and
sheep data are unpublished data of C.R.M., S.N.K.
and H.A.S. in myocytes supplied by the members of
the laboratories of Dr K. Dibb and Prof. A. Trafford at
the University of Manchester.
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Figure 4. PAH and EC coupling in cardiac myocytes
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recent work on rainbow trout (Oncorhynchus mykiss)
has shown that Phe and retene (1-methyl-7-isopropyl
phenanthrene) shorten APD (Vehniäinen et al. 2019)
due to varying potency of the inhibitory effect on K+
versus Ca2+ channels. Although AP shortening can also
be arrhythmogenic, these species differences highlight the
need to consider multiple species in order to understand
overall PAH effects.

EC and excitation-transcription coupling. The reduced
Ca2+ transients in fish myocytes following Phe exposure is
attributed to an inhibition of Ca2+ influx through L-type
calcium channels (LTCC; see Fig. 4A). PAH-induced
changes in intracellular Ca2+ levels not only affect contra-
ctility, but may also contribute to changes in gene
expression by impinging upon excitation-transcription
coupling (see Fig. 4B). Excitation-transcription coupling
links gene expression to the physiological state of myo-
cytes through activation of various transcription factors
like cAMP response element-binding protein (CREB),
nuclear factor of activated T-cells (NFAT), and myo-
cardin (Wamhoff et al. 2004, 2006). Perturbation of Ca2+
levels by Phe diminished mRNA and protein expression of
the sarcoplasmic reticulum calcium ATPase (SERCA), the
Ca2+ sequestering protein on the sarcoplasmic reticulum
(SR) and T-box 5 (Tbx5), a transcription factor regulating
SERCA expression in Phe exposed zebrafish embryos and
Phe exposed H9C2 cells (rat embryonic cardiac myoblasts)
(Zhang et al. 2013).

Crude oil exposure has also been shown to alter
Ca2+-dependent gene expression during embryonic
and early larval development in fishes including
signalling pathways such as bone morphogenetic protein
10 (BMP10) and myocardin (Sørhus et al. 2017).
The initiating event for both EC coupling and
excitation-transcription coupling are the same (Fig. 4).
Electrical stimuli depolarize the membrane and trigger the

opening of LTCCs and the influx of Ca2+, which in turn
induce the cascade leading both to contraction and to Ca2+
regulated induction of gene expression (Fig. 4A) in the
nucleus (Fig. 4B). Thus, impairment of various ionic influx
pathways by PAHs may affect both excitation-contraction
and transcription-coupling. Interestingly, Ca2+-induced
gene regulation appears to be sensitive to both localized
Ca2+ increases near the site of influx and to increases
in nuclear Ca2+ (Dolmetsch, 2003). Even though the
impact on EC and excitation-transcription coupling
is reversible, downstream effects such as circulatory
defects and abnormal gene expression, especially during
vulnerable developmental stages, may cause irreversible
morphological changes. BMP10’s primary function of
driving cardiac trabeculation (Grego-bessa et al. 2007) was
found to be up-regulated (4-fold) upon dysregulation of
the Ca2+ controlled gene myocardin in response to crude
oil pollutants (Sørhus et al. 2017). Taken together, these
alterations to electrophysiology, EC coupling and gene
expression in the myocyte could contribute to contractile
failure, abnormal contractile rhythm and the abnormal
cardiac phenotype seen in vivo following PAH exposure
(Incardona et al. 2004, 2005; Hicken et al. 2011; Mager
et al. 2014; Incardona & Scholz, 2016; Sørhus et al. 2016,
2017).

Cardiac hypertrophy. Cardiac hypertrophy is a common
pathology in many CVDs and is characterized by increased
cell size and protein synthesis, ultimately leading to
inefficient contractility of the heart as well as changes
in coronary perfusion (Shimizu & Minamino, 2016).
Cellular hypertrophy has been observed in H9C2 rat
cardiomyoblasts with low Phe exposure, and in excised
rat hearts where Phe increased expression of atrial
natriuretic protein (ANP), brain natriuretic protein
(BNP), and c-Myc hypertrophic markers (Huang et al.

directly activate the myofilament and can also initiate Ca2+-induced Ca2+-release from Ca2+ channels on SR
membrane (ryanodine receptors, RyR). The global increase in the cytosolic [Ca2+]i transient activates contra-
ctile proteins leading to contraction. Repolarization of the AP occurs in large part by K+ efflux through ERG
(ether-à-go-go-related gene) channel. Relaxation follows repolarization by removal of Ca2+ from the cytosol
primarily via re-uptake of Ca2+ into the SR (via the sarcoplasmic reticulum calcium ATPase, SERCA) and extrusion
of Ca2+ out of the cell via the Na+-Ca2+ exchanger (NCX). Exposure to PAHs, specifically Phe, impairs EC coupling
as indicated by the red inhibition bars at various ionic flux pathways. Ion flux pathways where inhibition has only
been measured indirectly have a red question mark beside them. Many pathways have not yet been investigated
like direct effect on myofilaments, or the NCX. B, interactions between EC coupling and excitation-transcription
coupling, indicating points of PAH regulation which inhibit Ca2+ cycling and thus transcription. EC coupling is as
in A. Excitation-transcription coupling proceeds when puronergic G-protein coupled receptors (P2Y) are activated
by ATP (not shown), which activates phosphoinositide 3-kinase (PI3K) via G protein. This causes phospholipase C
(PLC) to be recruited to the membrane and produce inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG).
IP3 receptor-mediated Ca2+ signals cause Ca2+ to enter the nucleus and through kinases and/or phophatases
(PKC, CamK, RhoA/ROK, CaN) activate transcription factors (CREB, NFAT, Myocd/SRF) ultimately leading to gene
expression. Tricyclic PAHs disrupt Ca2+ cycling pathways in the cell, reducing Ca2+ stores, and affect Ca2+-related
gene expression pathways. CaN, calcineurin; CamK, calcium–calmodulin-dependent protein kinase; PKC, protein
kinase C; RhoA, Ras homolog gene family, member A; ROK, rho associated kinase; NFAT, nuclear factor of activated
T-cells; SRF, serum response factor; Myocd, myocardin; CREB, cAMP response element-binding protein.
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2016). Furthermore, DNA hypermethylation, another
intracellular effect observed upon Phe exposure (Liu et al.
2013) has been implicated in the down-regulation of
microRNA-133a, leading to increased expression of its
target genes such as CdC42 and RhoA (involved in hyper-
trophic growth response) (Huang et al. 2016). In zebrafish,
Zhang et al. (2013) showed that Phe exposure increased
matrix metalloproteinase-9 (MMP-9) expression and
activity. MMP-9 is an important regulator of cardiac
tissue remodelling, disruption of which has been shown to
cause cardiac dysfunction such as dilated cardiomyopathy
(DCM) via ventricle dilatation and wall thinning. This
study also identified up-regulation of transforming growth
factor-β (TGF-β), a regulator of collagen synthesis. This
increased activity of MMP-9 and TGF-β corresponds
to degradation of extracellular matrix and disruption
of collagen content of cardiac tissue leading to DCM
(Pauschinger et al. 1999). Notably, these works support
the idea that low levels of Phe exposure are able to change
gene and protein expression in animal and cell models (see
Fig. 4B).

Altered cardiac remodelling associated with air
pollution has also been recently identified in humans.
In a large asymptomatic population, with no prevalent
CVD, prior exposure to PM2.5 (specific PAHs were not
described) was associated with increased left and right
ventricular end-diastolic volume and end-systolic volume
(Aung et al. 2018). A comprehensive mechanistic study by
Wold et al. (2012) further demonstrated that long-term
(9 months) PM exposure was associated with cardiac
hypertrophy, changes in cardiac myocyte phenotype and
impaired cardiac contractility. These demonstrate a means
by which PM could induce/exacerbate heart failure and
provide evidence of additional pathways underlying the

associations between inhaled PM, hypertrophy, CVD and
stroke (Shah et al. 2013).

Interspecies disparity: the need to expand our model
systems

The devastating impact of point oil spills on aquatic
organisms generated significant interest in uncovering
the physiological mechanisms underlying PAH toxicity.
Indeed, our mechanistic understanding of PAH cardio-
toxicity has been derived largely from work on fish.
However, it is now well established that PAHs comprise
a significant proportion of air pollution and that
PAH cardiotoxicity extends to mammalian and human
systems. The core functional and physiological properties
of the heart are maintained across vertebrate classes,
suggesting that, despite differences in routes of uptake
between fish (water/gill/gut) and terrestrial mammals
(air/lung/gut) (Incardona & Scholz, 2017), cardiotoxic
pathways identified in fishes would be similar in other
vertebrates (Shin & Fishman, 2002). Indeed, drugs that
have cardiac activity in humans and other mammals
have similar effects in fish (Langheinrich, 2003) and
individual tricyclic PAHs cause cardiac arrhythmias in
zebrafish that mirror those caused by drugs that inhibit
the hERG K+ channel subunit (Incardona et al. 2004).
This is not surprising given that the region encompassing
the canonical binding residues between the human and
zebrafish ERG differ by only a single amino acid residue
(Langheinrich et al. 2003) (see Fig. 5). Therefore, fish,
and in particular zebrafish, provide a convenient model
for probing human cardiac safety pharmacology and
toxicology at a functional level. Indeed, drugs that are
known to prolong the QT interval in humans also

HUMAN HNLGDQIGKPYNSS-GLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVM 645
DANRE  DNLADQIGKQYNDSNSFSGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNPEKIFSICVM 617

.**.***** **.* .:.******************************** *********

HUMAN LIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAW 705
DANRE  LIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVKEFIRFHQIPGGLRQRLEEYFQHAW 677
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Figure 5. Homology of ERG channels
Schematic representation (A) and sequence
homology (B) of pore-helix and S6 helix
regions between hERG and zERG channels.
Sequence alignments made in UniProt
(Q12809 and Q8JH78). The pore-helix is
highlighted in red and S6 helix in blue. The
GFG selectivity sequence is highlighted in
green. Residues known to contribute to the
canonical drug binding site in hERG are
highlighted by red dashed boxes. Note that
residue numbering in A refers to amino acid
position in hERG. hERG:zERG equivalents:
T623 = T595; S624 = S596; V625 = V597;
G648 = G620; Y652 = Y624; F656 = F628.
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modulate adult zebrafish QT interval (Tsai et al. 2011).
In this light, it is particularly striking that an analysis
of ERG blockade by over 11,000 compounds in a drug
development pipeline identified peak potency associated
with structures containing three aromatic rings (Ritchie &
Macdonald, 2009). Thus, the wide array of Phe-related
and other tricyclic compounds associated with fossil
fuel emissions are all potential contributors to acute
cardiac impacts of air pollution. However, it should be
acknowledged that there are also significant differences
between human and (zebra) fish hearts (Table 1),
particularly the molecular basis of the cardiac ionic
currents which may be produced by non-orthologous
genes in zebrafish and humans (Haverinen et al. 2007,
2018; Hassinen et al. 2015; Vornanen & Hassinen, 2016).
Fish also differ from mammals with respect to intracellular
Ca2+ cycling (Shiels & Galli, 2014), again highlighting the
need to study multiple species in order to understand over-
all PAH effects.

It is arresting that the most genetically tractable
mammalian model (the mouse) has markedly abbreviated
ventricular APs and despite the presence of genes for
major repolarizing ion channels (see Table 1), it relies
on different repolarization currents to those in humans
(particularly with respect to the lack of IKr contribution
to adult ventricular repolarization; Nerbonne et al. 2001;
Table 1) limiting the use of the mouse for safety
assurance pharmacology (European Medicines Agency,
2005). Large mammalian models and human induced
pluripotent stem cell (hiPSC) derived cardiomyocytes are
important platforms within drug discovery and cardiac
safety testing paradigms (Fermini et al. 2016; Chowdhury
et al. 2017; Sirenko et al. 2017) but have only very recently
been utilized for PAH toxicity testing. High-throughput
in vitro cardiotoxicity of a library of 69 representative
environmental chemicals and drugs was successfully
assessed using hiPSC-derived cardiomyocytes (Sirenko
et al. 2017). The value of hiPSC-derived cardiomyocytes
for the evaluation of drug-induced pro-arrhythmia is
further exemplified by the ongoing ‘CiPA’ (comprehensive
in vitro pro-arrhythmia assay) initiative, in which
hiPSC-derived cardiomyocytes comprise a key arm of a
multi-strand paradigm (Fermini et al. 2016). The trans-
lational implications of PAH research using hiPSCs in
medium and high-throughput test platforms are therefore
far reaching. Our understanding of the cardiovascular
effects of air pollution has been greatly expanded by
using translational approaches, linking epidemiological
results with cellular studies, animal models and controlled
exposure in man. The addition of model fish species
and high-throughput cell assays will be valuable in
identifying the action of specific PAHs on the CVS,
and their interactions with other constituents within
pollutants.

Conclusions and future directions

Over the last two decades there has been considerable
research into the cardiovascular effects of air pollution
and many modes of inducing toxicity have been identified.
However, the specific role of PAHs bound to PM
requires further elucidation and the aim of this review
was to stimulate investigative effort in this area. A
comprehensive study of approximately 4800 tricyclic
aromatic compounds in the GlaxoSmithKline drug
discovery pipeline exhibited IC50 values ranging from
10 nM to 30µM (mean IC50 �3µM; Ritchie & Macdonald,
2009). Therefore, it is important to note that while Phe has
been the focus of this review, other polycyclic aromatic
compounds in air can synergistically contribute to cardio-
toxicity. Moreover, evidence indicates that other physio-
logical systems in addition to the CVS are affected by
PAH/PM exposure, an observation that has clear parallels
with the burgeoning list of extrapulmonary effects linked
to air pollution over the last decade (Raftis & Miller,
2019; Schraufnagel et al. 2019a,b). Some of these pathways
are acknowledged in the abstract figure which leads this
article.

Due to the conserved nature of fundamental
biological pathways amongst vertebrates, fish exposed
to petroleum-derived PAH mixtures in the natural
environment have served as sentinels, providing
significant insights into the potential human health
impacts of PAHs and PM pollution. Thus, expanding
research into PAH toxicity is important to fill current
knowledge gaps, and strengthen the foundation for air
and water policy management.
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Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer
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