56 research outputs found

    Zellzyklus- und Dichteabhängigkeit todesrezeptorvermittelter Apoptose und Untersuchungen des von RKO-Zellen konditionierten Mediums

    Get PDF
    Im Rahmen dieser Arbeit sollte untersucht werden, ob eine Zellzyklusabhängigkeit der CD95- vermittelten Apoptose besteht. Dazu wurde ein ecdysoninduzierbares Genexpressionsystem für die induzierte Überexpression der CDK-Inhibitoren p21 und p27 in RKO-Zellen (Kolonkarzinomzellen) zur Herbeiführung eines Zellzyklusarrests in der G1-Phase benutzt. Nach Induktion mit dem Ecdysonhomolog Muristeron wurde durch Zugabe von rekombinanten hCD95-Liganden Apoptose ausgelöst und anschließend untersucht. Die erzielten Ergebnisse zeigen, dass der Induktor Muristeron an sich und nicht die p21- bzw. p27-Überexpression die anti-apoptotische Akt-Kinase aktiviert, die Expression des anti-apoptotischen Bcl-xL erhöht, die Caspase-8-Aktivierung (entweder am CD95-DISC oder durch "Feedback"-Aktivierung durch Caspase-3) und die darauf folgenden Ereignisse verhindert und somit die hCD95L-induzierte Apoptose blockiert. Zusätzlich beeinflusst der Induktor auch das Genexpressionsmuster der behandelten Zellen, was ebenfalls für die Hemmung der Apoptose mit verantwortlich sein könnte. Somit ist das ecdysoninduzierbare Genexpressionsystem zur Apoptoseuntersuchung in RKO-Zellen nicht verwendbar. Mit der Untersuchung des Apoptoseverhaltens proliferierender RKO-Zellen konnte gezeigt werden, dass überlebende Zellen nach hCD95L-Behandlung vermehrt in der G0/G1-Zellzyklusphase nachweisbar sind, während apoptotische (Caspase-3-positive) Zellen aus der G2/M-Phase heraus sterben. Allerdings weisen die apoptotischen Zellen kaum Cyclin B1 auf, ein für die G2-Phase wichtiges und typisches Cyclin. Somit bleibt die genaue Verknüpfung von Zellzyklusregulation und Apoptose auch nach diesen Analysen ungeklärt. In einem dritten Ansatz - Zellzyklusarrest durch Dichtearretierung - konnte eine Hemmung der CD95- vermittelten Apoptose in der arretierten Zellpopulation nachgewiesen werden. Allerdings sekretieren RKO-Zellen einen anti-apoptotischen Faktor in ihr Medium, dessen Konzentration und Wirkung mit größerer Zelldichte zunimmt und somit für die Protektion, unabhängig von Zellzyklusarrest oder Proliferation, verantwortlich ist. Konfluente und auch mit konditioniertem Medium behandelte RKO-Zellen zeigen im Vergleich zu dünn ausgesäten RKO-Zellen Veränderungen, die denen sehr ähnlich sind die beim Übergang einer epithelverankerten Zelle zu einer migrierenden Einzelzelle (EMT) auftreten. Beispielsweise verändert sich die Zusammensetzung des Zytoskeletts, die Zellen verlieren den Zell-Zell-Kontakt und lösen sich ab, bleiben aber am Leben. Zusätzlich steigt die Sekretion von Zytokinen an, die Angiogenese, Migration und Invasion positiv beeinflussen. Sowohl konfluente als auch mit konditioniertem Medium behandelte sub-konfluente Zellen sind apoptoseresistent (hCD95L, TRAIL, UV, Staurosporin), woran u.a. die Kinasen PKC und PI3K, aber auch das anti-apoptotische Bcl-xL beteiligt sind. Die Zellen sterben interessanterweise, wenn ein agonistischer anti-CD95-Antikörper statt des rekombinanten CD95-Liganden verwendet wird, was vermuten lässt, dass eine mangelhafte Vernetzung der einzelnen DISC-Komplexe zur Apoptosehemmung führt, welche durch den Antikörper dann aber erzwungen wird. Zwar handelt es sich hierbei um ein reines Zellkulturmodell, dennoch könnte es bedeuten, dass die Umgebung in einer dichten RKO-Zellkultur vergleichbar ist mit der in größeren soliden Tumoren. Die Zellen brauchen Nährstoffe, versuchen über eine Neovaskularisierung Anschluss an ein Blutsystem zu finden und sekretieren Lockstoffe, Wachstumsfaktoren sowie Proteasen, um die Metastasierung zu erleichtern. PI3K, cPKCs und Bcl-xL tragen dabei zu einer Apoptoseresistenz bei, welche die Zellen zum einen resistent gegenüber Anoikis, Nährstoffmangel, aber auch gegen angreifende zytotoxische T-Zellen macht. Eine weitere Aufklärung der hier ablaufenden Prozesse würde es erleichtern, Möglichkeiten zu finden, in diese Signalwege einzugreifen, um die Apoptosesensitivität wieder herzustellen und die Metastasierung zu verhindern. Insbesondere ist die Identifizierung des für die Apoptoseprotektion verantwortlichen Zytokins das nächste wichtige Ziel bei der Fortsetzung dieser Arbeiten.The aim of this study was to investigate whether a cell cycle dependency in CD95 mediated apoptosis exists. Therefore an ecdysone-inducible expression system was used to induce overexpression of the CDK-inhibitors p21 and p27 in RKO cells (colon carcinoma cell line) to arrest then in the G1 cell cycle phase. Upon transgene induction with the ecdysone homologue muristerone, apoptosis was induced via addition of recombinant hCD95 ligand and then further analyzed. The results demonstrate that muristerone itself and not the overexpression of p21 or p27 activates the anti-apoptotic Akt kinase, increases expression levels of anti-apoptotic Bcl-xL, inhibits caspase-8 activation (possibly at the CD95 DISC or alternatively at the level of feedback activation by caspase-3) as well as downstream events, and therefore inhibits hCD95L-induced apoptosis. Additionally the inductor influences the gene expression profile of treated cells, which could also be involved in the inhibition of apoptosis. In conclusion, these data show that the Ecdysone-inducible gene expression system is not useful to study apoptosis in RKO cells. By investigating apoptotic behavior of proliferating RKO cells the observation was made that, upon hCD95L treatment, surviving cells are more likely to be found in the G0/G1-cell cycle phase. Apoptotic (caspase-3 positive) cells preferentially die from G2/M-phase as judged by the DNA profile, although they do not express the G2/M-typical cyclin B. Therefore, the question of a direct link between cell cycle and apoptosis still remains open. In a third approach - cell cycle arrest via contact inhibition of dense cells - an inhibition of CD95- mediated apoptosis in cell cycle arrested cells could be proven. Further analysis revealed that RKO cells secret an anti-apoptotic factor into the medium, with increasing concentration (and effectiveness) with higher cell density. This factor is responsible for apoptosis protection, independently of cell cycle arrest or proliferation. Dense RKO cells and cells plated at low density before treatment with conditioned medium show changes similar to those in epithelial-mesenchymal transition (EMT) if compared to sparsely seeded RKO cells: cytoskeleton reorganization, loss of cell-cell-contact, loss of adherence and anoikis resistance. In addition, secretion of angiogenesis-, migration- and invasion-inducing cytokines increases. Dense, as well as sparse cells treated with conditioned medium are apoptosis-resistant (hCD95L, TRAIL, UV, staurosporine). The kinases PKC and PI3K and the anti-apoptotic Bcl-xL contribute to the resistance phenotype. The cells die however if treated with anti-CD95-antibody, suggesting an insufficient clustering of single DISC-complexes and inhibition of apoptosis when the cells are treated with recombinant hCD95 ligand. The agonistic CD95-antibody on the other hand forces DISC clustering. This cell culture model may be comparable to the situation in large solid tumors. The cells need nutrients, try to connect to the vascular system through angiogenesis and secrete chemoattractants, growth factors and proteases to facilitate metastasis formation. PI3K, cPKC and BclxL induce apoptosis resistance, which protects cells against anoikis, serum deprivation and cytotoxic T cells. Further investigations of underlying mechanisms could provide new targets to manipulate the signaling pathways in order to restore apoptosis sensitivity in tumor cells and to prevent metastasis formation. In this context, it will be highly interesting to identify the anti-apoptotic factor secreted by RKO cells

    iTReX: Interactive exploration of mono- and combination therapy dose response profiling data

    Get PDF
    High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application’s ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at (https://itrex.kitz-heidelberg.de).Peer reviewe

    Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    Get PDF
    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents

    ERBB and P‐glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P‐glycoprotein

    Get PDF
    Chemotherapy resistance is a persistent clinical problem in relapsed high-risk neuroblastomas. We tested a panel of 15 drugs for sensitization of neuroblastoma cells to the conventional chemotherapeutic vincristine, identifying tariquidar, an inhibitor of the transmembrane pump P-glycoprotein (P-gp/ABCB1), and the ERBB family inhibitor afatinib as the top resistance breakers. Both compounds were efficient in sensitizing neuroblastoma cells to vincristine in trypan blue exclusion assays and in inducing apoptotic cell death. The evaluation of ERBB signaling revealed no functional inhibition, i.e., dephosphorylation of the downstream pathways upon afatinib treatment but direct off-target interference with P-gp function. Depletion of ABCB1, but not ERRB4, sensitized cells to vincristine treatment. P-gp inhibition substantially broke vincristine resistance in vitro and in vivo (zebrafish embryo xenograft). The analysis of gene expression datasets of more than 50 different neuroblastoma cell lines (primary and relapsed) and more than 160 neuroblastoma patient samples from the pediatric precision medicine platform INFORM (Individualized Therapy For Relapsed Malignancies in Childhood) confirmed a pivotal role of P-gp specifically in neuroblastoma resistance at relapse, while the ERBB family appears to play a minor part

    Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma

    Get PDF
    Introduction: Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Four subgroups with distinct genetic, epigenetic and clinical characteristics have been identified. Survival remains particularly poor in patients with Group 3 tumors harbouring a MYC amplification. We herein explore the molecular mechanisms and translational implications of class I histone deacetylase (HDAC) inhibition in MYC driven MBs. Material and Methods: Expression of HDACs in primary MB subgroups was compared to normal brain tissue. A panel of MB cell lines, including Group 3 MYC amplified cell lines, were used as model systems. Cells were treated with HDAC inhibitors (HDACi) selectively targeting class I or IIa HDACs. Depletion of HDAC2 was performed. Intracellular HDAC activity, cellular viability, metabolic activity, caspase activity, cell cycle progression, RNA and protein expression were analyzed. Results: HDAC2 was found to be overexpressed in MB subgroups with poor prognosis (SHH, Group 3 and Group 4) compared to normal brain and the WNT subgroup. Inhibition of the enzymatic activity of the class I HDACs reduced metabolic activity, cell number, and viability in contrast to inhibition of class IIa HDACs. Increased sensitivity to HDACi was specifically observed in MYC amplified cells. Depletion of HDAC2 increased H4 acetylation and induced cell death. Simulation of clinical pharmacokinetics showed time-dependent on target activity that correlated with binding kinetics of HDACi compounds. Conclusions: We conclude that HDAC2 is a valid drug target in patients with MYC amplified MB. HDACi should cover HDAC2 in their inhibitory profile and timing and dosing regimen in clinical trials should take binding kinetics of compounds into consideration

    Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance

    Get PDF
    Current preclinical models in tumor biology are limited in their ability to recapitulate relevant (patho-) physiological processes, including autophagy. Three-dimensional (3D) growth cultures have frequently been proposed to overcome the lack of correlation between two-dimensional (2D) monolayer cell cultures and human tumors in preclinical drug testing. Besides 3D growth, it is also advantageous to simulate shear stress, compound flux and removal of metabolites, e.g., via bioreactor systems, through which culture medium is constantly pumped at a flow rate reflecting physiological conditions. Here we show that both static 3D growth and 3D growth within a bioreactor system modulate key hallmarks of cancer cells, including proliferation and cell death as well as macroautophagy, a recycling pathway often activated by highly proliferative tumors to cope with metabolic stress. The autophagyrelated gene expression profiles of 2D-grown cells are substantially different from those of 3D-grown cells and tumor tissue. Autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions. Three-dimensional cultures depleted of the autophagy mediators BECN1, ATG5 or ATG7 or the transcription factor FOXO3, are more sensitive to cytotoxic treatment. Accordingly, combining cytotoxic treatment with compounds affecting late autophagic flux, such as chloroquine, renders the 3D-grown cells more susceptible to therapy. Altogether, 3D cultures are a valuable tool to study drug response of tumor cells, as these models more closely mimic tumor (patho-)physiology, including the upregulation of tumor relevant pathways, such as autophagy

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.Peer reviewe
    corecore