
Ecker et al. Acta Neuropathologica Communications  (2015) 3:22 
DOI 10.1186/s40478-015-0201-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver
RESEARCH Open Access
Targeting class I histone deacetylase 2 in MYC
amplified group 3 medulloblastoma
Jonas Ecker1, Ina Oehme1, Ralph Mazitschek2,3, Andrey Korshunov4,5, Marcel Kool6,7, Thomas Hielscher8,
Judit Kiss1,9, Florian Selt1,9, Carina Konrad1, Marco Lodrini1,10, Hedwig E Deubzer1,9,10, Andreas von Deimling4,5,
Andreas E Kulozik9, Stefan M Pfister6,7,9, Olaf Witt1,9 and Till Milde1,9*
Abstract

Introduction: Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Four subgroups with
distinct genetic, epigenetic and clinical characteristics have been identified. Survival remains particularly poor in
patients with Group 3 tumors harbouring a MYC amplification. We herein explore the molecular mechanisms and
translational implications of class I histone deacetylase (HDAC) inhibition in MYC driven MBs.

Material and Methods: Expression of HDACs in primary MB subgroups was compared to normal brain tissue. A panel
of MB cell lines, including Group 3 MYC amplified cell lines, were used as model systems. Cells were treated with HDAC
inhibitors (HDACi) selectively targeting class I or IIa HDACs. Depletion of HDAC2 was performed. Intracellular HDAC activity,
cellular viability, metabolic activity, caspase activity, cell cycle progression, RNA and protein expression were analyzed.

Results: HDAC2 was found to be overexpressed in MB subgroups with poor prognosis (SHH, Group 3 and Group 4)
compared to normal brain and the WNT subgroup. Inhibition of the enzymatic activity of the class I HDACs reduced
metabolic activity, cell number, and viability in contrast to inhibition of class IIa HDACs. Increased sensitivity to HDACi
was specifically observed in MYC amplified cells. Depletion of HDAC2 increased H4 acetylation and induced cell
death. Simulation of clinical pharmacokinetics showed time-dependent on target activity that correlated with binding
kinetics of HDACi compounds.

Conclusions: We conclude that HDAC2 is a valid drug target in patients with MYC amplified MB. HDACi should
cover HDAC2 in their inhibitory profile and timing and dosing regimen in clinical trials should take binding kinetics
of compounds into consideration.
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Introduction
Medulloblastomas (MB) are the most frequent malignant
brain tumors in children, with approximately 60 and
300 newly diagnosed cases per year in Germany and the
US, respectively [1]. Brain tumors account for 38%
of cancer-related deaths, while leukemias account for
24% only despite having a much higher incidence [2].
Current treatment strategies for MB include aggressive
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surgery, cranio-spinal irradiation and adjuvant chemother-
apy dependent on a risk stratification, which until very
recently was solely based on clinical features such as hist-
ology and presence or absence of metastates at the time of
primary diagnosis (e.g. HIT 2000 trial in Germany).
However, it has recently been recognized that MB com-
prises four distinct molecular subgroups termed WNT,
SHH, Group 3 and Group 4 [3], and newly opened clinical
trials, such as the SIOP PNET5 trial (NCT02066220), in-
clude molecular markers such as beta-catenin in their risk
stratification. Both WNT and SHH groups have been clas-
sified based on their characteristic activated oncogenic
pathways, yet much less is known about the drivers of
Group 3 and 4 MB [4,5]. Importantly, the majority of
Group 3 tumors are characterized by high protein levels
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of cMYC, either induced by MYC amplification or by
aberrant MYC expression [6,7], and MYC amplification is
a marker for high-risk in Group 3 [8].
Each molecular subgroup can be divided further into

different subtypes based on characteristic molecular ab-
errations, with different clinical courses in SHH, Group
3 and Group 4 [8], strongly suggesting additional bio-
logical heterogeneity in each subgroup. Indeed, the ana-
lysis of molecular biomarkers in individual subgroups
reveals complex heterogeneity of MB subgroups down
to the individual level, as has been shown for SHH [9]
and Group 3 [10] MB. While the WNT and the SHH
subgroups are characterized by several recurrent focal
mutations in their respective determining pathways, re-
current mutations are unexpectedly rare in Group 3 and
Group 4 tumors [4,11,12]. However, several mechanisms
of structural variation are recurrent in Group 3 and
Group 4 tumors, including somatic copy number alter-
ations, chromothripsis and tetraploidy [13,14], as well as
a newly recognized mechanism termed enhancer hijack-
ing that leads to aberrant oncogene expression [10].
More recently it has become evident that a driving

element in Group 3 and Group 4 MBs are aberrations of
genes associated with chromatin modification [5,15].
Most of these genes encode for histone mark reader pro-
teins or members of chromatin modifying enzyme com-
plexes, such as KDM6A [4], MLL2 [11], ZMYM3 and
CHD7 [12]. Somatic mutations, as well as aberrant ex-
pression and somatic copy number variations of chro-
matin modulators lead to altered H3K4 and H3K27
methylation profiles in Group 3 and Group 4 tumors
[16]. Finally, the novel MB candidate driver gene LIN28B
was identified in Group 3 and 4 MB solely based on ab-
errant DNA methylation and overexpression of an alter-
native transcript [17].
While much insight has been gained into the relevance

and function of histone methylation-dependent epigen-
etic events in Group 3 and Group 4 MB, much less is
known about lysine acetylation- (or HDAC-) dependent
epigenetic aberrations in MB at a chromatin-wide level.
The zinc-dependent HDAC1 through HDAC11 com-
prise 11 members grouped into four classes (I, IIa, IIb,
and IV) [18]. In SHH MBs, SHH-induced HDAC activity
is required for continued proliferation of cerebellar gran-
ule precursor cells [19]. We and others have previously
shown that HDACi treatment exerts anti-tumoral effects
in MB in vitro and in vivo [20-24]. Our group has shown
that distinct HDAC family members control specific
oncogenic functions in pediatric neuronal cancer models
including differentiation, cell cycle regulation, apoptosis,
autophagy, chemotherapy resistance [25,26], and alterations
in tumor suppressor pathways [27,28].
We have further demonstrated that specific HDAC

isoforms are differentially expressed in MB [29,30], and
found that expression of class IIa HDACs 5 and 9 corre-
lates with cytogenetic aberrations and poor clinical
outcome in the entire cohort of MB tumors, and high
HDAC2 expression in group 3 MBs [30]. With the recent
advent of class-selective HDAC inhibitors (HDACis),
such as the class IIa-selective HDACis MAZ1863 and
MAZ1866 [31] and selective substrates has opened the
possibility of class-selective exploration of HDAC biology.
The aim of the presented study is to investigate the se-

lective targeting of HDAC family members in a MB sub-
group specific manner, and to elucidate the translational
consequences.

Materials and methods
Patients and clinical samples
Material from patients of tissue microarray (TMA) set
(paraffin embedded medulloblastoma samples) were ran-
domly collected at the Department of Neuropathology,
Burdenko Neurosurgical Institute (Moscow, Russia) be-
tween 1993 and 2011. Approval to link laboratory data
to clinical data was obtained by the Institutional Review
Board. Two neuropathologists confirmed the diagnoses
according to the 2000 WHO classification. None of the
patients had received irradiation or chemotherapy be-
fore collection of specimens. Metastatic state (M stage)
was determined by magnetic resonance imaging and
cerebro- spinal fluid cytopathology at diagnosis. Clinical
and histopathologic data are summarized in Additional
file 1: Table S1.

Cell lines, cell culture and siRNA-mediated knockdown
Cell lines and cell culture conditions have been de-
scribed previously: MED8A, UW228-2, ONS76 and
DAOY in [29], HD-MB03 in [24], D458 in [32]. All cell
lines had their identity confirmed and proven to be free
of contamination by mycoplasma or viral contamination
using the Multiplex cell Contamination Test (McCT)
service [33]. MYC status of all cell lines was confirmed
by fluorescent in-situ hybridization (see below). siRNA
transfection was performed as reported previously [29].
siRNA reagents were purchased from Qiagen (Hilden,
Germany) (see Additional file 2: Table S2).

RNA-isolation, cDNA synthesis, quantitative reverse
transcription real-time PCR (qPCR) and gene expression
analysis
RNA extraction, cDNA synthesis, quantitative real-time
PCR, and software analysis was performed as reported
previously [29]. Primers were purchased from Qiagen (see
Additional file 3: Table S3). Normal cerebellum RNA was
purchased from Clontech (Mountain View, CA, USA).
The database analysis tool R2 (http://r2.amc.nl) was

used to investigate HDAC1, 2, and 3 mRNA expression
in brain tumors and normal brain tissues using

http://r2.amc.nl


Ecker et al. Acta Neuropathologica Communications  (2015) 3:22 Page 3 of 14
publicly available datasets (Dataset: [7], Probesets: HDAC1
(201209_at), HDAC2 (201833_at), HDAC3 (216326_s_at).

Western blot (WB) and image processing
Protein concentrations of cell lysates were determined
using the Thermo Scientific Pierce (Waltham, MA, USA)
BCA Protein Assay Kit according to manufacturer’s in-
structions. The following antibodies were used: monoclo-
nal mouse anti-human cMYC (1:200, catalog no. sc-40;
Santa Cruz, Dallas, TX, USA), monoclonal mouse anti-
human HDAC2 (1:1000; catalog no. sc-81599; Santa Cruz),
polyclonal rabbit anti-human AcH4 (1:1000; catalog no.
06-866; Milipore, Billerica, MA, USA) and mouse mono-
clonal anti–β-actin (1:10000; catalog no. A5441; Sigma-
Aldrich) and detected with Amersham ECL Prime
Western Blotting Detection System (GE Healthcare,
Little Chalfont, UK) on PVDF membrane with Chemi-
Smart 5000 Technology (Vilber Lourmat, Eberhardzell,
Germany). Uncropped images were contrast enhanced
with Chemi-Capt 5000 (Vilber Lourmat) and subse-
quently cropped in Microsoft Office PowerPoint 2007
SP3 (Microsoft Corporation, Redmond, WA, USA).

TMA, IHC, and fluorescent in-situ hybridization (FISH)
DNA and RNA was extracted from the original tumors in-
cluded in this TMA and analyzed by nanoString [34] and/
or 450 k Array [35] as described previously to assign the
molecular subgroups. For preparation of the TMA and
IHC, see [36]. For detection of HDAC2, the antibody No.
ab32117 [Y461] (Abcam, Cambridge, UK) was used at
1:250 dilution. IHC was performed as reported previously
[37]. The scoring of the IHC was performed by two investi-
gators (JE and TM), who were both blinded to the clinical
information. Four staining intensity levels were defined
and weightened with 0 for no staining, 1 for weak staining,
2 for intermediate staining and 3 for strong staining. The
H-Score was calculated by summation of the percentages
of area stained at each intensity level multiplied by the
weightened intensity (i.e. 0, 1, 2, or 3) [38]. The arithmetic
mean of the scoring of both investigators was calculated.
MYC status of all cell lines was verified by FISH, as

described previously [39]. The probe used was Vysis
LSI MYC (Cat. No.: 03 N87-020, Abbott, Abbott Park,
IL, USA).

Microscopy
Bright-field images as well as IHC images were cap-
tured using an Olympus CX41 microscope with a Color
View camera, and CellB 2.3 software (Olympus, Shinjuku,
Tokyo, Japan).

HDAC inhibitors (HDACis)
Class IIa HDACis MAZ1863 (compound 6) and MAZ1866
(compound 13) have been described previously [31].
MAZ1863 and MAZ1866, vorinostat (suberoylanilide
hydroxamic acid, SAHA; Cat. No. S1047, Selleck
Chemicals, Houston, TX, USA), and MS-275 (Cat. No.
M4693-15A.25, Biomol GmbH, Hamburg, Germany) were
dissolved in DMSO. HDACi and solvent controls were di-
luted in cell culture medium and added to the cell culture
medium to achieve the indicated concentrations.

HDAC activity assay and washout experiments
0.5×10*5 cells in 100 μl medium were seeded in a 96-
well plate and incubated for 24 hours at 37°C, 5% CO2.
The artificial class I HDAC substrate Boc-Lys(Ac)-AMC
(Cat. No. 1875, Bachem, Bubendorf, Switzerland), or
class IIa HDAC substrate Boc-Lys(trifluoroacetyl)-AMC
(Cat. No. 1985, Bachem) reconstituted in DMSO were
diluted in cell culture medium for a final concentration
of 50 μM. The developer solution was prepared with a
working concentration of 2.5 mg/ml trypsin from por-
cine pancreas in DMEM, 2% of TritonX-100 and 10 μM
of Trichostatin-A (TSA) and stored on ice until usage.
Cell culture media was carefully removed and cells were
treated with varying concentrations of HDACi (25 μl/
well). After 5 min incubation at room temperature 25 μl
of substrate dilution were added. After 30 min incuba-
tion at 37°C 50 μl of developer solution were added.
After 30 min incubation at 37°C emitted fluorescence
was measured in the plate reader FLUOstar OPTIMA
(BMG Labtech, Ortenberg, Germany), and analyzed with
OPTIMA Software, Version 2.00 R3 (Labtech).
For washout experiments cells were seeded as de-

scribed above. After 24 hours incubation at 37°C the
medium was carefully removed and the cells were
treated with a dilution of an HDAC inhibitor and incu-
bated at 37°C. After 90 minutes the inhibitor was care-
fully removed from the cells and cells were washed three
times with 200 μl of fresh medium. At timepoints 0 h,
1 h, 3 h, 6 h, 12 h and 24 h after inhibitor removal
HDAC activity was measured as described above.

Metabolic activity assay, cell counts and analysis of
viability
The WST-1 assay (Roche, Basel, Switzerland) was used
for the metabolic activity assays, these were performed
as described [40]. Cell counts and analysis of viability by
trypan blue exclusion staining were performed using a
ViCell XR counter (Beckman Coulter, Brea, CA, USA).

Measurement of the sub-G0 fraction and caspase-3–like
activity
The sub-G0 fraction and caspase-3–like activity was
measured as described [29]. The positive control for the
caspase-3-like activity consisted of untransfected cells
treated with UV light (35 mJ/cm2) 12 h before caspase-
3-like activity measurement.
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Statistics analysis and graph editing
In vitro experiments were performed in a minimum of
three biological replicates. Half-maximal effective concen-
trations (EC50) of HDACi were calculated using GraphPad
Prism version 5.01 (GraphPad Software, La Jolla, CA,
USA) for Windows. Results of treatments were compared
using an unpaired t-test or One Way ANOVA test with
Bonferroni’s multiple Comparison Test as indicated. p-
values <0.05 were considered significant. Graphs were
generated using GraphPad Prism version 5.01 and Micro-
soft Powerpoint for Mac 2011, Version 14.4.5.

Results
MYC amplified medulloblastomas display differential
expression of class I HDACs
We have previously shown that differential expression
of HDAC family members occur in medulloblastoma.
Whereas class IIa HDACs 5 and 9 correlate with specific
cytogenetic aberrations and poor clinical outcome in the
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Figure 1 HDAC2mRNA and protein is differentially expressed in clinica
HDAC1, 2 and 3, as measured by gene expression profiling. Only HDAC2 is ele
4), but not in the subgroup with good prognosis (WNT) or normal cerebellum
(IHC) (brown staining) in the majority of medulloblastoma tumor samples. Bo
(sample 2, molecular subgroup: SHH) examples are shown. No HDAC2 protein
analyzed (depicted region: molecular layer of the hemisphere). Scale bar size:
expression of HDAC2 protein in SHH, Group3 and Group4 compared to WNT
entire cohort of MB tumors [29], analysis of MB sub-
group specific expression revealed a particular high level
of HDAC2 in all three subgroups of MB associated with
higher risk, i.e. SHH, group 3 and group 4 [30].
Since target expression in the respective tissue is a pre-

requisite for targeted treatment, we examined the expres-
sion of class I HDACs in primary tissues. In a first step, we
investigated mRNA expression levels of class I HDACs
HDAC1, 2 and 3 in primary MB samples. HDAC2 was
most abundantly expressed in MB (WNT: 296.2 – 742.4
AUs, SHH: 720.1 - 2190.1 AUs, Group3: 611.6 – 2847.6
AUs, Group4; 546.2 - 2007.1 AUs), compared to HDAC1
(WNT: 179.3 – 436 AUs, SHH: 22.7 – 481.1 AUs, Group3:
22.2 – 514.3 AUs, Group4 4.4 – 184.9 AUs) and HDAC3
(mean of WNT 21.6 – 103.3 AUs, SHH 13.7 – 118.1
AUs, Group3 30.9 – 123,5 AUs, Group4 23.9 – 116
AUs) (Figure 1a), with highest expression of HDAC2
mRNA in subgroups with poor prognosis (SHH, Group
3 and 4), while both WNT and normal cerebellum
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showed low expression of HDAC2 (Figure 1 a). In
contrast, HDAC1 mRNA displayed similar levels in
subgroups with highly disparate prognoses (WNT
and SHH/Group3), and at higher levels in WNT, SHH,
and Group 3 than in Group 4 and normal cerebellum
(Figure 1a, upper panel). Finally, HDAC3 was expressed
at relatively low but similar levels in all four molecular
subgroups and normal cerebellum (Figure 1a, lower
panel). HDAC2 therefore displays the most differential ex-
pression pattern in the respective subgroups and is highly
expressed in subgroups with overall poor clinical progno-
sis. In contrast both HDAC1 and 3 expression shows little
or no correlation to subgroup prognosis. We therefore fo-
cused on HDAC2 in the following analyses. To evaluate
protein expression of the putative target HDAC2 in a large
set of primary MB tumor samples, we performed immu-
nohistochemistry (IHC) for HDAC2 on a tissue micro-
array (TMA) with n = 142 MB samples (Figure 1b). Each
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mRNA relative to normal cerebellum (Figure 2a). Add-
itionally, only HDAC2 showed a significant differential
expression between MYC amplified compared to non-
amplified cells (Figure 2a), which was confirmed on the
protein level by western blot (Figure 2b). This correl-
ation between MYC and HDAC2 mRNA expression can
also be found in primary Group 3 MBs in a series of n =
42 tumors (Figure 2c), GEO ID GSE37382 [14]. We con-
clude that the MYC amplified cell lines HD-MB03,
MED8A, and D458 reflect the molecular biology of
MYC amplified Group 3 MBs, with regard to expressing
high levels of class I HDAC2, and thus are good models
to study the function of HDAC2 in this subgroup.

Inhibition of class I but not class IIa HDAC catalytic
activity affects MYC amplified medulloblastoma cells
To determine the functional oncogene dependency of MB
cells to particular HDAC family members, we investigated
the consequences of targeting HDAC enzymatic activity
on MB cell survival in an isoform-selective manner. To
this aim, we tested the ability of vorinostat (targeting class
I and class IIb HDACs) [41] versus MAZ1863 and
MAZ1866 (targeting class IIa HDACs) [31] to inhibit
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reduced metabolic activity in both MYC amplified and
non-amplified MB cells (Figure 4a). However, comparison
of the dose-dependent inhibition of metabolic activity by
vorinostat and MS-275 for each cell line revealed a strong
difference between MYC amplified and non-amplified MB
cells, with EC50 values for MYC amplified cells within
the range of published clinically achievable peak plasma
concentrations (Figure 4b; Additional file 4: Table S4)
(4,49 μM for vorinostat [42] and 390 nM for MS-275
[43]). Accordingly, after treatment for 72 h both the num-
ber as well as the viability of cells was significantly reduced
in MYC amplified cells (MED8A, HD-MB03) compared
to a MYC non-amplified cell line (UW228-2) (Figure 5).
These results suggest that inhibition of class IIa activity
has only a minor impact on MB tumor cell survival,
whereas inhibition of class I enzymes HDAC1, 2 and 3
elicits a strong response in MYC amplified MB cells.

HDAC2 depletion induces cell death and attenuates cell
growth
To investigate the effect of loss of HDAC2 function on
tumor biology, we performed siRNA-mediated knock-
downs of HDAC2 in MYC amplified cells. Knockdown
with three different siRNAs against HDAC2 reduced
HDAC2 protein, and increased acetylation of histone
H4 72 h after knockdown (Figure 6a). Caspase 3-like
activity was increased 72 h after knockdown (Figure 6b),
both increasing the sub G0/G1 fraction (Figure 6c) and
reducing the number of viable cells (Figure 6d) 96 h
after knockdown. We therefore conclude that siRNA-
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mediated depletion of HDAC2 protein induces cell death
and reduces cell growth.

Simulation of clinical pharmacokinetics of HDACi in vitro
uncovers challenges for translation
Despite the well-established pre-clinical effects of HDAC
inhibitors on differentiation, cell cycle, apoptosis, au-
tophagy, chemotherapy resistance [25,26], as well as al-
terations of tumor suppressor pathways [27,28], clinicial
trials have so far failed to demonstrate a significant anti-
tumoral effect of HDACis in solid malignancies [44,48],
in contrast to leukemias and lymphoma. One potential
explanation concerns the very short in vivo half-life of
some compounds including vorinostat with a plasma
half-life of 90 minutes only [49], leaving the tumor unex-
posed to the compound for most of the time when
dosed once per day. In classical cell culture models,
however, cells are exposed to HDACi 24 h/day in vitro.
To model the in vivo plasma half-life in our in vitro cell
culture model, we performed wash-out experiments
in vitro, simulating the in vivo conditions of a once per
day vorinostat application. After incubation with either
vorinostat or MS-275, intracellular class I/IIb HDAC ac-
tivity was measured at regular intervals, starting immedi-
ately after the washout, and a setting with no washout
served as controls. Vorinostat immediately and strongly
suppressed HDAC activity in the setting with no wash-
out (Figure 7a), demonstrating immediate inhibition of
class I HDACs. MS-275 similarly suppressed HDAC ac-
tivity only in a time-dependent manner, i.e. a level of
suppression similar to vorinostat was only achieved after
12 h (Figure 7a), suggesting a slow inhibition kinetic of
MS-275, as has already been shown for aminoanilide/
benzamide based inhibitors [50]. In the washout setting,
strikingly, the inhibition of HDAC activity by vorinostat
was immediately lost after the washout, suggesting very
fast binding kinetics and dissociation of the inhibitor
from its target. MS-275 however did still inhibit HDAC
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activity after washout, similar to the level in the no wash-
out setting at 0 h, with only a slow recovery of HDAC ac-
tivity (Figure 7a), again suggesting slow binding kinetics.
Accordingly, in the analysis of downstream epigenetic ef-
fects by WB of acetylated histone H4, we found an imme-
diate and lasting hyperacetylation of H4 following
vorinostat treatment in the no washout setting, which was
rapidly reduced in the washout setting (Figure 7b). Con-
versely, the hyperacetylation of H4 in response to MS-275
treatment increased over time with almost no immediate
hyperacetylation, but a long lasting effect even in the
washout setting, i.e. hyperacetylation of H4 can still be
found 6 h after washout (Figure 7b). Analysis of anti-
tumoral efficacy as determined by metabolic activity after
72 h showed a strong effect in the no washout setting for
both vorinostat and MS-275, as previously shown
(Figure 7 c). However, if the cells were incubated once per
24 h for 90 min followed by a washout, simulating the
clinical situation of once per day (qd) vorinostat applica-
tion in a patient, no reduction of metabolic activity was
seen for vorinostat, and only at a very high concentration
of 10 μM for MS-275 (Figure 7c). In summary, vorinostat
has a strong but short-lived inhibitory effect on HDAC ac-
tivity, with a brief downstream effect on the epigenetic tar-
get H4 under simulated clinical conditions, which is
reflected by no detectable effect on metabolic activity.
MS-275 has a moderate but longer-lived effect on HDAC
activity, with a lasting downstream effect on the epigenetic
target H4 under simulated clinical conditions. This how-
ever translates into reduction of metabolic activity only at
very high MS-275 concentrations, which are clinically not
achievable. These findings suggest a clinically relevant cor-
relation between a compound’s binding kinetics and its
on-target activity.

Discussion
Successful treatment of MB remains a challenge in many
patients, which suffer from therapy-related side effects,
and the prognosis remains poor for many patients with
Group 3 MB [13]. Based on reports suggesting that epi-
genetic events seem to play an important role in this
subgroup, we have investigated the selective targeting of
HDAC family members in a subgroup specific manner.
We have previously found that the class IIa isoforms

HDACs 5 and 9 are widely expressed on the protein
level, and relatively overexpressed on the mRNA level in
MB with poor prognosis (Chr 6q gain or 17q gain) [29]).
Depletion of either HDAC5 or HDAC9 protein in MB
cells resulted in a reduction of cell proliferation and in-
crease in cell death [29]. To investigate whether inhibition
of the enzymatic deacetylase activity can phenocopy these
effects, we tested novel selective class IIa HDAC inhibi-
tors. Although these inhibitors strongly inhibited class IIa
enzymatic activity in MB cells in dose-dependent fashion,
we did not observe any obvious biological effect, such as
reduction of metabolic activity in MB cells. These results
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suggest that the inhibition of class IIa enzymatic activity
clearly did not confer the same biological effect as the re-
duction of HDAC5 or HDAC9 protein, suggesting that
the enzymatic activity is not the main mechanism for the
oncogenic effects of HDAC5 or 9 in MB cells. In contrast,
inhibition of class I HDACs elicited a strong response, es-
pecially in MYC amplified cell lines. The enzymatic activ-
ity of class I and IIa HDACs therefore plays very divergent
roles in MB biology. Indeed, a tyrosine residue in the cata-
lytic site of class I HDACs potentiates the lysine deacetyla-
tion activity acting as a transition stabilizer [51]. Due to a
highly conserved mutation in the catalytic site of verte-
brate class IIa HDACs, switching this tyrosine to a histi-
dine residue, the deacetylating activity of class IIa HDACs
on histone proteins is reduced more than a 1000-fold
[52]. The repressive effect of class IIa HDACs on gene
expression therefore appears to be largely independent of
their catalytic activity on histone proteins. This surprising
finding is further emphasized by studies showing that a
splice variant of HDAC9 lacking the catalytic HDAC do-
main represses the expression of MEF2 target genes just
as effectively as wild-type HDAC9 protein [53]. Finally it
is being discussed that class IIa HDACs might play an im-
portant role in signal transduction independently of their
enzymatic activity, either by bromodomain functioning as
readers of epigenetic marks [41], or by shuttling between
the nucleus and the cytoplasm [54] as has been shown for
HDAC5 [55] and HDAC7 [56], and this could well be true
for HDAC5 and 9 in MB.
To verify target presence and elucidate the class I

HDACs involved in MB biology, we carried out expres-
sion analyses and found class I HDAC2 to be the most
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strongly overexpressed in MB in general [30] and in the
three MB subgroups SHH, group 3 and group 4 (associ-
ated with unfavourable or high risk) in particular. Our
results indicate that MYC amplified cell lines have
higher sensitivity to HDACi, that comprise class I
HDACs 1, 2 and 3 in their inhibitory profile, than MYC
single copy cell lines. A previous report studying the ef-
fect of the HDACi depsipetide (FK228), which most po-
tently inhibits all class I HDACs, demonstrated that the
tumor most sensitive to depsipeptide treatment tested (a
CNS-PNET) had the highest expression of HDAC2 rela-
tive to HDAC1, and 3-7 [57]. Furthermore, MYC ampli-
fication is a hallmark of Group 3 MB, and importantly
the transcription factor cMYC has been described to
govern the transcription of HDAC2 [58]. We have previ-
ously shown that the epigenetic regulation of miR-183 in
neuroblastoma involves MYCN and HDAC2 in the same
complex [27]. Based on these findings and consistent
with our data, showing a significantly increased sensitiv-
ity for class I HDAC inhibiting agents in MYC amplified
and HDAC2 overexpressing cell lines, the treatment of
MYC amplified MB with HDAC inhibitors comprising
class I HDACs in their inhibitory profile seems to be
promising. Future studies should aim at the elucidation
of the molecular interactions of cMYC and HDAC2,
such as protein-protein interactions, feedback loops, and
non-histone lysine deacetylation, governing the suscepti-
bility of MYC amplified MB to HDACi.
Finally, whether HDACis will be efficacious for the

treatment of solid tumors is still under debate. Many trials
have failed to show meaningful response of solid tumors
to HDACis [44] [45-48]. The root of failure to translate pre-
clinical findings in general has been extensively discussed
[59-61]. In general, insufficient pharmacological modeling
of the clinical situation in terms of drugs concentrations
and kinetics are the primarily criticized factors [61]. De-
tailed recommendations to improve the predictive value of
pre-clinical cancer studies have been developed [60], which
include the use of appropriate models, and understanding
of the clinical reality, i.e. knowledge of the limitations of
pre-clinical experimental settings. Analysis of the models
used in our studies confirmed the faithful recapitulation of
the patients’ tumors by the Group 3 cell lines used in our
study, as evidenced by MYC amplification, and MYC and
HDAC2 expression analysis. To emulate in vitro the drug
concentrations present in patients when treated with HDA-
Cis, we mimicked the clinical situation with appropriately
low HDACi concentrations as well as washout experiments.
Our results suggest that several reasons contribute to the
failure of HDACis in the clinic despite their promising
in vitro results. First, in the absence of a predictive
biomarker, trial cohorts have been poorly pre-selected for
patients responding with high sensitivity to HDACi treat-
ment, suggesting the lack of efficacy. The most promising
predictive biomarker identified in post-hoc analyses to date
is IHC for HR23B, which has been shown to be a positive
predictive marker for vorinostat in patients with cutaneous
T-cell lymphoma [62] and for belinostat (PXD101) in pa-
tients with hepatocellular carcinoma [63]. We here validate
MYC amplification as a predictive and routinely applicable
clinical biomarker for HDACi sensitivity of medulloblas-
toma patients. Second, HDACis have a very short inhibitory
effect on HDACs when present only a fraction of a day. As
this is the case in patients, but not in cell culture, both pre-
and clinical studies need to recognize clinical as opposed
to cell culture conditions, and subsequently of the limits of
pre-clinical data. Pre-clinical studies need to investigate
conditions present in patients, as performed in our washout
experiments, and especially pay attention to the lifetime of
the drug-target complex [64], as well use adequate and in-
formative readouts [65]. New dosing schedules could well
be tested under these conditions, before being translated
into the clinical setting. The difference of the half-life of the
drug-target complex between vorinostat and MS-275 indi-
cates that the lifetime of the drug-target complex is at least
partially determined by the molecular set up of the inhibi-
tory agent [64]. The development of novel agents with
increased half-life of the drug-target complex, such as pano-
binostat, could well be a promising strategy. On the clinical
side, studies involving HDACis should demonstrate on tar-
get activity in tumor tissue in addition to simply monitoring
drug levels and histone acetylation in PBMCs as a surro-
gate), and possibly develop novel dosing and/or application
schedules, such as oral vs. intravenous application, extended
release or infusion over several hours, multiple dosing with
lower doses etc.

Conclusions
In summary, we conclude, that i) class I HDACs in gen-
eral and HDAC2 in particular are a valid target in Group
3 MB, ii) MYC amplified MB are more sensitive to
HDACi than MYC non-amplified MB and thus MYC
amplification could serve as a positive predictive marker
for HDACi treatment, and iii) that both inhibitory pro-
files and binding kinetics of compounds are of major im-
portance when designing clinical trials using HDACis.
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