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A B S T R A C T   

High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments 
have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic 
features for developing novel predictors of treatment response, but they can also add evidence for therapy de-
cision making in precision oncology. Recent analysis methods developed for either assessing single agents or 
combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. 
Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and 
combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) 
based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for 
combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction 
networks and support the detection of matches between top therapy hits and the sample omics features to enable 
the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or 
therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug 
treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal 
the application’s ability to identify potential sample-specific biomarkers based on drug target interaction 
networks. 

The iTReX web application is accessible at https://itrex.kitz-heidelberg.de   

1. Background 

Functional cell-based therapy profiling approaches have become 
crucial in both basic biomedical research and in preclinical studies, and 
play an important role in establishing novel anti-tumor therapeutic 
strategies in precision medicine [1–3]. Quantitative assessment of 
therapy efficacy using cell models is mostly based on dose responses 
profiled at multiple concentrations in multi (96-, 384-, or 1536-) well 

plates. Cells are screened against a library of drugs or treatments (e.g., 
fractionated radiation therapy) to determine the relative sensitivity and 
resistance of cells to each treatment. Viability or death of treated cells 
can be measured using various readouts such as luminescence (e.g., 
CellTiter-Glo® assay), absorbance (e.g., MTT assays) [4], or fluores-
cence (e.g., flow cytometry, fluorescence microscopy) [5], either on a 
well-based or on a single cell level. The standard analysis of such drug 
profiling data usually includes quality control, readout normalization, 
dose-response curve fitting, as well as drug hit ranking based on a 
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consensus of sensitivity thresholds [2]. 
Reproducibility of quantitative cell-based therapy response profiling 

remains a challenge due to variability in experimental and computa-
tional settings [6]. One of the most challenging computational aspects is 
the drug response curve fitting, for which different models exist. The 
four-parameter logistic (4PL) model has been widely used to fit the 
relation between doses and responses in pharmacological experiments, 
assuming that the vast majority of therapy responses would follow a 
symmetric sigmoid curve [7–10]. Alternative model functions derived 
from the logistic model include the generalized five-parameter logistic 
(5PL) model, which results in an asymmetric dose-response curve and 
may better represent the therapy response curve behavior [11]. Hence, 
multiple state-of-the-art R packages for dose-response curve fitting and 
analysis include both 4PL and 5PL models [12,13]. The final model 
performance is estimated using weighted or non-weighted goodness of 
fit, which can be used to select the model of choice for each curve [13]. 
Moreover, constraint settings of the fitted curve such as assuming a 
minimum inhibition of 0% and a maximum of 100% affect the goodness 
of fit and force curves to deviate from the readings that represent cell 
proliferation [14]. 

Curve fitting acts as a basis for assessing single pharmacokinetic 
parameters or metrics depending on multiple parameters [15,16] 
including approaches combining the slope, area under the curve (AUC) 
and the maximum effect reached (Emax) [2,15,17]. Moreover, the fitted 
curve parameters provide the basis for computing the concentration at 
which 50% of the maximum response is reached (IC50), which repre-
sents a measure of potency of the therapy. In addition, Emax represents 

the efficacy of the treatment [18]. Since single model parameters can 
capture only limited information about the differences in the response 
patterns, the AUC is used as a metric combining both potency and effi-
cacy, yet it suffers from similar limitations as IC50 and Emax measure-
ments [15]. Hence, further computational developments have been 
implemented aiming to integrate the multi-parametric values into a 
single score, such as the drug sensitivity score (DSS) [19]. Although the 
DSS proposed by Yadav et al. shows a better performance in comparison 
to the IC50, AUC and the area over the dose-response curve (activity 
area-AA) metric [18], it is still implemented for up to 4PL models, and it 
is often used with constraint curve fitting [19]. 

Therapeutic agents are routinely combined to achieve therapeutic 
benefits in various medical fields, specifically in clinical oncology [20]. 
Systematic drug combination testing across cell lines, patient-derived 
xenografts (PDX), or patient-derived cell cultures (PDCs), including 
organoids, presents the opportunity to discover novel drug combinations 
[21]. Synergy and antagonism of therapy combinations are often 
quantified by the comparison of an experimentally obtained effect and 
the mathematical reference effect of a null-reference model [22]. 
Several experimental and computational methods are available to 
identify synergism in combination screens (synergy matrix screens) 
[23], in which a range of dose responses with all dose pairs of two 
combination agents within the chosen concentration ranges are tested. 
However, the limiting factor for efficient usage of synergy matrix screens 
for patient -derived material is often the high number of cells required 
for testing of several drug combinations simultaneously. Thus, a 
minimal-input combination experimental setup has been used to tackle 

Nomenclature 

4PL 4-Parameter Logistic 
5PL 5-Parameter Logistic 
AA Activity Area 
absIC25 absolute Inhibitory Concentration 25 
absIC50 absolute Inhibitory Concentration 50 
Amin minimum activity threshold 
ATP Adenosine Triphosphate 
AUC Area Under the Curve 
BRAFV600E proto-oncogene B-Raf 
BzCl Benzethonium Chloride 
CDKN2A Cyclin Dependent Kinase Inhibitor 2A 
cellHTS cell High Throughput Screening 
CNN Convolutional Neural Network 
COMPASS Clinical implementation Of Multidimensional 

PhenotypicAl drug SenSitivities in pediatric precision 
oncology 

CRA-mod Combination therapy Response Analysis module 
CTG CellTiter-Glo 
CVD Coefficient of Variability in Difference 
dcDSS_asym differential combination asymmetric Drug Sensitivity 

Score 
DIP Drug-Induced Proliferation 
DMSO Dimethyl Sulfoxide 
dPI differential Percentage Inhibition 
DSS Drug Sensitivity Score 
DSS_asym asymmetric Drug Sensitivity Score 
DSS_asym,adjusted adjusted asymmetric DSS 
Emax Maximum Effect reached 
ETV6-NTRK3 ETS Variant Transcription Factor 6 - Neurotrophic 

Receptor Tyrosine Kinase 3 
FBS Fetal Bovine Serum 
FIMM Institute for Molecular Medicine Finland 
gCSI Genentech Cell Line Screening Initiative 

GDSC Genomics of Drug Sensitivity in Cancer 
GOF Goodness Of Fit 
GR Growth Rate 
GRAY Oregon Health and Science University Breast Cancer 

Screen by Dr Joe Gray’s lab 
GUI Graphical User Interface 
HSA Highest Single Agent 
HitNet-mod drug Hits interaction Network mapping module 
IC50 Inhibitory Concentration 50 
Imax maximum possible attainable percent inhibition 
Imin minimum possible attainable percent inhibition 
IMT Inflammatory Myofibroblastic Tumor 
INDELs insertions and deletions 
INFORM INdividualized Therapy FOr Relapsed Malignancies in 

Childhood 
iTReX interactive Therapy Response eXploration 
MRA-mod Monotherapy Response Analysis module 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide 
nplr n-parameter logistic regression 
NDR Normalized Drug Response 
NEAA Non-Essential Amino Acid 
OTP One Touch Pipeline 
PBMCs Peripheral Blood Mononuclear Cells 
PDC Patient-Derived Cell Culture 
PDX Patient-Derived Xenograft 
QCN-mod Quality Control and Normalization module 
R2 coefficient of determination 
relIC50 relative Inhibitory Concentration 50 
sDSS_asym selective asymmetric DSS 
SNVs Single Nucleotide Variants 
STS Staurosporine 
TPM Transcripts Per Million 
TRK Tyrosine Kinase  
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the limitations on the sample material, which consists of the addition of 
a single fixed concentration of a combination drug (or treatment) to a 
drug library tested over a concentration range [24]. In comparison to 
other matrix-based combination approaches testing all possible combi-
nations of two concentration ranges (i.e., 4 × 4, 6 × 6, 8 × 8), this 
minimal-input combination can be written as a 2 × N matrix for each 
drug combination (library drug and combination drug). Thus, each 
matrix consists of two rows, representing a single-agent (library drug 
alone) and a combination screen (library drug plus fixed concentration 
of the combination drug), respectively, and N columns, representing a 
full concentration range of the library therapy drug. In the presented 
screens, a combination drug is used at a single non-zero concentration 
(solvent only, conc = 0, and fixed concentration, conc > 0) and a range 
of 5 concentrations is used for a library drug, presenting a 2 × 5 matrix 
screen. 

While preclinical studies often rely on drug combination screening, 
only few of the recently described quantitative sensitivity metrics have 
been adjusted to include the DSS metric in the evaluation of combination 
screens. To date, there are several openly available analysis tools for 
analyzing monotherapy drug screening data, such as cellHTS [25], 
PharmacoGx [26], GRmetric [27], and Breeze [28]. Moreover, analysis 
methods [29] and platforms have been developed for synergy matrix 
screens [30–32]. However, most of these analysis platforms are 
restricted to 4PL models and all of them are limited to the analysis of 
either single agent screens or synergy screens and none of the platforms 
enable the visualization of drug target networks nor map omics data to 
the hit drug targets reported to identify potential biomarkers. 

To address the above-mentioned challenges, we developed the 
interactive Therapy Response eXploration (iTReX) application for the 
analysis of both mono- and combination therapy response profiling data 
with an unconstraint dose-response fitting method. We use an extended 
DSS with 5PL scoring, including an asymmetric DSS curve fitting and 
integration method. For analysis of combinatorial treatment response, 
iTReX further provides a computational method to calculate differential 
combination Drug Sensitivity Scores (dcDSSasym) values from various 
treatments strategies for capturing synergies for experiments with 
limited material and reduced experimental costs. iTReX is available as a 
web-based Shiny application (https://itrex.kitz-heidelberg.de), 
enabling users to analyze raw values of therapy response profiling 
screens with various modalities (i.e., luminescence, absorbance, fluo-
rescence) or preprocessed screen output data (e.g., cell viability/death). 
The workflow allows users to easily process datasets from small-, me-
dium- to high-throughput therapy screens and provides a basis for 
interpretation of the treatment response data by calculating and visu-
alizing quality control outputs, drug sensitivity metrics, and interaction 
network maps. Therapy hits are visualized in several formats such as 
heatmaps and waterfall plots on a sample or cohort basis. The therapy 
hit outcomes can be used to construct drug targets interaction networks 
and/or mapped to omics features of the processed sample to explore 
potential biomarkers. iTReX aims to support users from the field of 
therapy discovery, preclinical and clinical research, therapy decision 
making and the translation of ex vivo results into the clinic. Analysis 
examples within this study are shown from the field of pediatric preci-
sion oncology, however, iTReX can also be used for any other disease 
areas aiming to identify therapy efficacies and potential drug repur-
posing opportunities. 

2. Materials and methods 

2.1. Implementation 

iTReX (v1.1.0) is developed as a Shiny application. Its modules use 
state of the art R packages, in addition to extended and newly developed 
functionalities. General data visualization, data manipulation, and 
report generation utilize public R libraries (ggpubr [33], dplyr [34], 
stringr [35], rmarkdown [36]). All presented results have been obtained 

with iTReX v1.1.0.The QCN-mod assesses the screen quality control and 
performs therapy response normalization. The MRA-mod uses the nplr 
package [13] for dose-response fitting using the residuals weight 
method and an extended version of the DSS [2]. The DSS was extended 
from a 4-parameter integral scoring model [19] to a 5-parameter inte-
gral in order to consider the asymmetry coefficient (Asym) along with 
the 4PL parameters including the x-coordinate at the inflection point 
(Xmid), Hill slope (Slope), the bottom and top asymptotes (Rmin and 
Rmax) respectively and the activity threshold (Amin). 

DSSasym∝
∫

R≥Amin
R_asym(x)dx = I(Xmid, Slope, Rmin, Rmax 

, Amin, Asym)

The selective DSS is computed by subtracting the asymmetric DSS of 
healthy (reference) samples from the asymmetric DSS of the tumor 
(subject) sample [28], with each drug being tested in the same con-
centration range for the tumor (subject) sample and healthy (reference) 
samples. The computed score is used to distinguish subject selective 
from general toxic therapeutics. The higher the sDSSasym, the more se-
lective is the therapy for the tumor (subject) sample. A sDSSasym close to 
zero indicates a non-selective therapy while a negative sDSSasym would 
indicate therapeutics with a higher effect in the healthy (reference) 
samples compared to the tumor (subject) sample.  

sDSSasym = DSSasym (tumor) – DSSasym (healthy)                                       

The adjusted DSSasym and the adjusted sDSSasym represent a fine- 
tuned DSSasym and sDSSasym, respectively, using the goodness of fit 
(GOF), where the GOF is computed using the nplr package [13].  

DSSasym,adj = GOF * DSSasym                                                                  

sDSSasym,adj = DSSasym,adj (tumor) - DSSasym,adj (healthy)                            

The CRA-mod computes the differential combination DSS metric 
(dcDSSasym) via a comparative analysis between the combination and 
monotherapy DSS metrics, in which the DSSasym (combo) is calculated 
for a treatment tested in 5 concentrations in combination with a therapy 
tested at a fixed concentration. DSSasym (mono) refers to the mono-
therapy sensitivity of the same treatment tested in 5 concentrations 
solely without the addition of the combination treatment fixed dose. 
Normalization of the raw values is performed separately for both the 
mono- and combination therapy, where the screening negative controls 
(e.g., DMSO) of the combo therapy must include the fixed combined 
treatment. The dcDSSasym aims to estimate the enhanced effect of a 
combination treatment within one score.  

dcDSSasym = DSSasym (combo) – DSSasym (mono)                                      

In order to explore the antagonistic, synergistic or enhanced effects 
of a combination treatment on a per dose basis, the CRA-mod computes a 
matrix of differential Percentage Inhibition (dPI) over therapies (t) and 
doses (d), where PI represents the inhibition fitted values.  

dPI(t, d) = PI(t, d) (combo) – PI(t, d) (mono)                                                 

The HitNet-mod is implemented to construct drug perturbation 
connectivity maps for the top n drugs that are defined by the user. An 
annotation table of drug names to their respective drug target genes 
must be uploaded by the user as an input. The top n selected targets are 
then used to construct the interaction network using OmniPathR, where 
the interactions are retrieved from the SignaLink database [37], and 
visualized using igraph [38]. 

The Omics-mod uses the molecular features of the specific analyzed 
sample, uploaded and provided by the user, to visualize matched events 
of the omics file to the HitNet-mod constructed map, allowing the 
visualization of multiple molecular events occurring within the inter-
action network. 
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2.2. Validation datasets 

2.2.1. Pharmacogenomic datasets analysis 
We used the MRA-mod to analyze raw viability drug response data of 

the GDSC (v2–8.0) [39], FIMM (v2016) [40], gCSI (v2017) [41], and 
GRAY (v2013) [42] datasets. The goodness of fit was used to assess the 
performance of the n logistic parameter fitting among all datasets. See 
the “Data availability” section for raw drug sensitivity data access. 

2.2.2. CRA-mod analysis of combination synergy screen by O’Neil et al. 
2016 

The O’Neil et al. dataset was used to validate the efficiency of the 
CRA-mod. Monotherapy raw data was first adjusted to span the same 
concentration ranges as the combination therapy raw data provided. 
The DSSasym scores were computed for all monotherapies, and drugs 
with a calculated DSSasym > 10 were selected as hits and further included 
in the CRA-mod analysis. The DSSasym cutoff of 10 was selected based on 
the performance of the symmetric DSS score described by Yadav et al., 
where drug sensitivity was observed for DSS scores starting in a range of 
(10− 15) in a set of acute myeloid leukemia ex vivo screen [19]. More-
over, the same cutoff was selected by Malani et al., where glucocorti-
coids showed an enhanced sensitivity in AML samples exceeding an ex 
vivo drug sensitivity score threshold of 10 [43]. Of note, a hit identifi-
cation threshold can depend on the sensitivity of an individual sample 
and may vary based on entity and screening setup. For the CRA-mod 
analysis, only one concentration (closest to the absolute IC25) for each 
of these hits was selected as the concentration for the combination 
partner to be added on top of the whole drug library, here as a theo-
retical approach for analysis only. The selected combinations were 
analyzed using the MRA-mod and the DSSasym scores were recorded. The 
CRA-mod finally was used to compute the dcDSSasym as the difference 
between DSSasym of the drug combination to its respective monotherapy. 
The differential percentage inhibition (dPI) was computed for each 
combination concentration. For the validation of the reproducibility of 
the results the median dcDSSasym across the screened cell lines was 
calculated for each drug and compared to the median Bliss scores for 
synergistic effects and the median Highest Single Agency (HSA) score for 
quantifying antagonism. The Bliss score is a synergy metric that com-
pares the observed effect of a drug combination to the expected effect 
based on the assumption that the two drugs act independently [44]; the 
HSA score represents the maximum single drug effect [29,45]. Both 
scores were retrieved from the DrugComb portal [32] for the full synergy 
matrix. See the “Data availability” section for data access. 

2.3. Established human cell lines and PDX screening 

2.3.1. Cell culture 
Demonstration of the monotherapy analysis using iTReX was con-

ducted using two human cancer cell lines, BT-40 and INF_R_153. The BT- 
40 low grade glioma cell line harboring a BRAF V600E mutation and 
CDKN2A deletion was provided by Peter J. Houghton (UT Health, San 
Antonio, Texas) and is described by Bid et al. [46]. The INF_R_153 cell 
line was generated from a primary tumor biopsy obtained from an in-
flammatory myofibroblastic tumor (IMT) enrolled in the INFORM reg-
istry study by the CWS study group (Prof. Ewa Koscielniak, Klinikum 
Stuttgart, Germany). Presence of the ETV6-NTRK3 fusion was confirmed 
by RNA-Seq analysis. Details of the INFORM study including Ethics 
Commitee approval and patient consent is described by Pfaff et al. [47]. 

The BT-40 and INF_R_153 cells were cultured in RPMI 1640 con-
taining L-glutamine (Gibco, Life Technologies) supplemented with 10% 
fetal bovine serum (FBS) and 1x non-essential amino acid solution 
(NEAA). Cell lines were expanded to 70% confluency before drug 
screening. 

The healthy (reference) sample repository consisted of five samples 
(one human fetal astrocyte (HA-1800 cell line) and 4 primary peripheral 
blood mononuclear cells samples (PBMCs)). The PBMC samples were 

collected from enrolled pediatric and young adult patients (age < 21) 
enrolled in the INFORM registry study and were submitted by the 
respective GPOH study centers for functional drug testing within 24 h 
after surgery. PBMCs were purified from heparin blood after two-fold 
dilution in RPMI using Ficoll Paque Premium (17–5446–52, GE 
Healthcare). PBMC samples underwent drug screening without pre-
culturing and were seeded at a concentration of a minimum 5000 cells/ 
well onto the pre-dispensed drug plates. 

The INF_R_1632 PDX model was established from a fresh surgical 
specimen of an INFORM patient with relapsed neuroblastoma by sub-
cutaneous engraftment of cells isolated from a fresh surgical specimen 
into immune-compromised mice. One tumor-bearing mouse was sacri-
ficed when the volume of the subcutaneous PDX tumor reached 
500 mm3. The mouse was anesthetized using 1.5–2.5 vol% isoflurane. 

The harvested tumor tissue (260 mg) was minced thoroughly with 
sterile scissors and further processed according to a protocol adapted 
from Stewart et al. [48]. Briefly, the mechanically homogenized tissue 
was enzymatically dissociated by incubating with 1.2 µg/ml trypsin 
(T9935, Sigma-Aldrich) in Neurobasal-A medium (10888022; Life 
Technologies) for ~30 min at 37 ◦C in a water bath. Digestion was 
stopped by adding 1.2 µg/ml trypsin inhibitor (T6522, Sigma-Aldrich), 
followed by repeated addition of 60 µl 1 mg/ml DNase in 0.5 M MgCl2 
until settlement of the remaining tumor fragments to the bottom of the 
tube was observed. The cell isolate was passed through a 40 µm cell 
strainer (352340; Corning) and spun down at 800 rpm for 5 min at room 
temperature. Red blood cells were removed by resuspending the cell 
pellet in 2 ml ACK Lysing buffer (LONZ10–548E; Lonza), incubating for 
2 min at room temperature and washing with TSM base medium [Sup-
plementary Table 1]. Subsequently, the cells were seeded at a density of 
3 × 106 cells per ml in TSM complete medium [Supplementary Table 2]. 
The cells formed free-floating three-dimensional spheroids and 
semi-adherent spheroids. 

Three days after tumor dissociation, the media containing free- 
floating spheroids were collected and centrifuged at 500 g for 5 min. 
Subsequently, the spheroids were dissociated by using 1 ml TrypLE 
Express (12604013; Life Technologies) and incubation at 37 ◦C for 
5 min. The semi-adherent cells were detached with 1 ml TrypLE Express 
at 37 ◦ for 5 min from the cell culture dish. The dissociated cells were 
combined in 5 ml TSM base, spun down at 500 g for 10 min at room 
temperature, and resuspended with TSM complete medium [Supple-
mentary Table 1] for cell counting. Drug screening was performed using 
1000 cells/well (4 ×104 cells/ml) in TSM complete medium in U-shaped 
round-bottom 384-well plates (3830; Corning) as described below. 

2.3.2. Drug response testing 
A customized drug library consisting of 76 oncology drugs [Supple-

mentary Table 3] was dispensed with an Echo 550 acoustic dispenser 
(Labcyte) to three round-bottom 384-well microplates (ready-to-go 
assay plates) by the High Throughput Biomedicine core unit (FIMM, 
HiLIFE, University of Helsinki, Finland). Each drug was transferred in 
five different concentrations, each as duplicate/plate, covering a 
10,000-fold concentration range. 0.1% DMSO and 100 μM BzCl were 
used as negative and positive controls in 25 µl final volume. The empty 
wells were included in all drug screening plates for 1) media only, no 
cells, and 2) for cells only, no treatment as previously described [16]. 
These ready-to-go assay plates were shipped to the local laboratory and 
stored in storage pods at RT under nitrogen gas until further use. For 
therapy response testing, cells were seeded on top of the pre-dispensed 
drugs in 25 µl of respective media per well at a density of 500 cells/-
well (2 × 104 cells/ml), 1000 cells/well (4 × 104 cells/ml) or 5000 
cells/well (2 × 105 cells/ml) as described above. Seeding of cells in 
U-shaped 384-well round bottom plates allowed for formation of 
three-dimensional spheroid cultures as one spheroid/well, ideally. Cells 
were incubated at 37 ◦C and 5% CO2 for 72 h, and the cell viability was 
measured as ATP-based cell viability with CellTiter-Glo® Luminescent 
Cell Viability Assay (CTG, G9243, Promega), using a FLUOstar OPTIMA 
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reader (BMG LABTECH) or TECAN SPARK plate reader with top optic 
and 1 s integration time. Additionally, cells were imaged using nuclear 
Hoechst (H3570, Thermo Fisher Scientific) staining in a no wash pro-
tocol and 30 min incubation followed by fluorescent microscopy using 
the ImageXpress Micro Confocal (Molecular Devices, San Jose, CA) 
high-content microscope. 

2.3.3. Combotherapy response testing 
The drug combination screen (INF_R_1632_V1_PDX_CS1, referred to 

in the following as INF_R_1632) for the PDX derived cells included the 
addition of a fixed concentration of 10 nM Trametinib, dispensed on top 
of the ready-to-go assay plates using a Tecan D300 drug printer on top of 
one replicate of each concentration of the 76 compound library 
described above. Trametinib was identified as one of the top hit drugs 
(most effective and clinically relevant) from a previously conducted 
single agent screen as described above using the same model and output 
of the MRA-mod analysis. The concentration of 10 nM represents the 
nearest administered concentration to the absolute IC25 as a single 
agent activity of Trametinib in the PDX model. All 76 drugs were tested 
as single agents and in combination with Trametinib within the same 
plate allowing for computation of the differential combination asym-
metric DSS (dcDSSasym). For replicate measurements, identical copies of 
each assay plate were measured. Otherwise, the screening was per-
formed as described above. 

2.3.4. Omics data 

2.3.4.1. WES and WGS data processing. Whole-exome (WE) and Whole- 
genome sequencing (WGS) was performed for the BT-40 and INF_R_153 
cell lines. Sequencing reads were aligned by the DKFZ One Touch 
Pipeline (OTP) [49] against the human reference genome (version 
GRCh37d5) [49]. The SNV and INDEL calling workflows are based on 
samtools/bcftools with additional custom filters (optimized for somatic 
variant calling by deactivating the pval-threshold in bcftools) and 
Platypus 0.8.1, respectively [50,51] as previously described [52]. The 
standard SNV and INDEL calling workflow was extended with filters 
developed for samples without matched control (no control workflow). 
HUGO gene nomenclature symbols of the called coding mutations were 
used as an input for the iTReX application. 

2.3.4.2. RNAseq data processing. RNA sequencing data for the BT-40 
and INF_R_153 cell lines were processed by the DKFZ OTP pipeline 
[49]. Transcripts Per Million (TPM) values were scaled for each cell line, 
and z-scores greater than 0.5 were identified as highly expressed genes 
per sample. 

2.3.4.3. Identification of fusion genes. Fusion genes from the RNA-seq 
data were identified using Arriba v2.1.0. (Arriba: Fast and accurate 
gene fusion detection from RNA-seq data) [53], available at htt 
ps://github.com/suhrig/arriba) 

Molecular features for BT-40 and INF_R_153 are provided in [Sup-
plementary Table 11 and 14], respectively. 

3. Results 

3.1. Overview of iTReX 

iTReX was implemented within the Shiny framework (https://shiny. 
rstudio.com/), combining the computational versatility of R with a user- 
friendly and interactive web interface. It integrates state of the art me-
dium to high throughput screening analysis approaches [2,13] with 
further extended and newly developed mono- and combination therapy 
response metrics. The application provides quantitative analysis for the 
therapy response data, hit scoring, and visualization of functional 
therapy results. In addition, it can be used to construct a sample specific 

drug-targets interaction network and map omics features to the network. 
Thereby, iTReX offers a complete workflow through five main functional 
modules: (i) the Quality Control and Normalization module (QCN-mod), 
(ii) the Monotherapy Response Analysis module (MRA-mod), (iii) the 
Combination therapy Response Analysis module (CRA-mod), (iv) the 
potential drug Hits interaction Network mapping module (HitNet-mod), 
and (v) a module for identifying potential sample-specific omics-based 
biomarkers from the drug target connectivity networks (Omics-mod). 
Results of quantitative outputs from the MRA and CRA modules can be 
visualized per individual sample or per cohort, consisting of multiple 
samples. An overview heatmap can be constructed to allow the com-
parison of therapy responses across samples (cohort analysis) with 
multiple clustering distance methods. 

Any numerical data, obtained by various techniques, including 
luminescence counts of ATP-based viability measures (CTG; CellTiter-
Glow) or e.g., cell- or well based outputs from microscopic imaging data, 
can be utilized, either as raw value or as normalized inhibition data. 
iTReX accepts a tabulated file as input [Supplementary Table 4], holding 
the coordinates for each well in the multi-well plate, a therapy name and 
the tested concentration, allowing for customized plate layouts, and raw 
or normalized read measurements. An example data file can be down-
loaded within the iTReX application for multiple formats of viability 
readouts demonstrating mono- or combination therapies performed on a 
single sample or a full cohort. Moreover, a demonstration of a pre- 
processed imaging-based readout is available [Supplementary Table 
5], where the imaging numerical measurements were computed using 
an image- analysis approach utilizing convolutional neural networks 
(CNNs) [54]. The layout used in the imaging screen can also be uploaded 
separately as exemplified in [Supplementary Table 6] where Staur-
osporine is annotated as an image-specific positive control at a fixed 
concentration of 250 nM and further used as treatment control (TRC) in 
a concentration series in this demonstration screen. The user can specify 
the type of readout uploaded (cell viability or cell death) according to 
the type of measurement used in the screen; cell death settings were 
selected for the demonstrated imaging data. Finally, iTReX supports the 
generation of interactive HTML visualization reports and tabulated 
spreadsheets, which can be downloaded from the output of the complete 
workflow [Fig. 1]. A user manual is provided within the home page of 
the iTReX application to support the user with step-by-step instructions. 
The user manual includes detailed information about data preparation, 
setting screening parameters, uploading data and results exploration. It 
further includes layout and data file demonstration examples allowing 
the user to test the application without the need of own data. 

3.2. Quality control and normalization module (QCN-mod) 

In order to detect potential technical errors in the raw data of therapy 
response profiling and to determine the quality of the analyzed screen as 
a first critical step in the data analysis workflow, iTReX includes the 
QCN-mod as an initial step to asses and visualize the quality of the 
screen(s) before further processing modules. A quantitative quality 
control summary table [Supplementary Table 7] is computed by the 
QCN module to assess discrepancies between screened wells (Sample/ 
Control) across one or multiple plates. The summary table includes Z’ 
metrics to show the separation between the distributions of the positive 
and negative controls. According to [25], an ideal Z’ would be 1, an 
excellent assay would have a Z’ between 0.5 and 1, a marginal assay 
would lie between 0 and 0.5, and an overlap between positive and 
negative controls would result in a negative Z’. The QCN module com-
putes the Z’ using the coefficient of variability in difference (CVD), and 
the robust CVD that is less sensitive to outliers by using the median and 
the mean absolute deviation [55]. The quality control summary table 
includes the mean, standard deviation, and the coefficient of variation 
for each measured well type (i.e., positive control, negative control). 
Furthermore, the module normalizes raw read counts to the provided 
controls. In case both positive and negative controls are provided, the 
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module performs the normalization of drug responses, which was shown 
to improve the accuracy and consistency of quantification of anti-cancer 
drug sensitivity [17]. 

The QCN module output includes the visualization of plate raw count 
distribution [Fig. 2a], plate layouts [Fig. 2b] and raw counts per well 
type box plots to detect variability between the screened plates and wells 
[Fig. 2c]. Often, therapy response profiling measures are performed in 
replicates to control reproducibility and to increase the precision of 
results. The QCN module calculates and visualizes the correlation be-
tween replicates and computes the Pearson correlation coefficient 
[Fig. 2d]. Furthermore, the measures (e.g., viability) of positive and 
negative controls are shown in a masked well-based heatmap to visually 
detect possible control outliers and technical errors that may occur in 
positive and negative control wells [Fig. 2e]. The outputted plots aid in 
identifying outlier wells visually. This allows the user for instance to 
manually exclude those wells from the raw data and re-upload the 
sample(s) to iTReX. Z-transformed and raw viability heatmaps are also 

generated for all uploaded plates to visualize possible edge effects 
[Fig. 2f]: it is nonetheless recommended to fill the outer rows and col-
umns of a multi-well plate with either just media (“empty” wells) and/or 
untreated cells in media (“untreated” wells) as demonstrated in this 
study [Fig. 2b], [Fig. 2f] to decrease evaporation effects which mostly 
occur in outer wells of a multi well plate format. A layout example of the 
plate design including empty and untreated wells used for this study is 
provided within the iTReX application for download and presented in 
[Supplementary Table 4]. A therapy control response (TRC) curve can 
also be included to verify the positive control drug behavior post data 
normalization. The therapy control serves as validation for the assay 
performed, where the visualization of the therapy response curve 
[Fig. 2g] allows the user to check the expected behavior and determine 
technical faults visually that can be observed. Gray bands are plotted 
above and below fitted curves to indicate the goodness of the model fit, 
which is computed using the coefficient of determination R2 between the 
measured and predicted inhibition values. Bands are + − 100 * (1 – R2) 

Fig. 1. A schematic overview of the iTReX application. (a) Overview of iTReX analysis workflow, where tabulated therapy plate layouts and/or screen readouts 
are accepted as input. Analysis can be performed using five analysis and visualization modules. (b) iTReX web interface from the MRA module output, where the user 
can explore therapy parameters, or visualize an interactive heatmap of asymmetric drug sensitivity score (DSSasym) ordered descending with a gradient blue color 
scheme. In addition, the user can hover interactively over the heatmap to visualize the fitted dose-response curves for each therapy, where the gray area surrounding 
the curve line indicates the standard error based on the goodness of fit. The MRA module includes further tab panels to visualize waterfall plots representing the 
DSSasym score and the selective DSSasym, which reveals selective vs. non-selective toxic therapies in case one or more healthy (reference) samples were uploaded. 
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units wide along the vertical direction, so they have a width of ±100 for 
the worst-possible fit while being invisible for perfectly fitting models. 
Finally, a report can be downloaded in HTML format. 

3.3. Monotherapy response analysis module (MRA-mod) considers 
asymmetry in therapy response metric scoring 

The MRA-mod was developed to analyze monotherapy responses. 
The module starts with fitting the dose-response curve of each drug or 
therapy based on the normalized inhibition values using a weighted 
(“residual weights”, to reduce the effect of possible outliers) n-param-
eter logistic model integrated in the log-concentration domain using the 
nplr R package [13], where n is an integer ranging between 2 and 5. A 
5PL model fits the dose-response curves based on the top and bottom 
asymptotes, Hill coefficient, the inflection point, and the asymmetry 
coefficient. The 2PL model depends only on the Hill coefficient and the 
inflection point, while assuming that the bottom and top asymptotes are 
strictly constraint to 0% and 100%, respectively, and a constant asym-
metric coefficient of 1. The 3PL model further optimizes the top 
asymptote over the 2PL, while the 4PL model also optimizes the bottom 
asymptote [Supplementary Fig. 1]. The module then computes mini-
mum and maximum attainable percent inhibition values (Imin, Imax) 
from the bottom and top asymptotes, capped at − 10% and 110%, 
respectively. Furthermore, the module computes the relative inhibitory 
concentration (relIC50) at which the inhibition is halfway between 
minimum and maximum attainable inhibition, the absolute 25%- and 
50%-inhibitory concentration (e.g., absIC25 – concentration at which 
25% inhibition is reached), an asymmetric drug sensitivity score based 
on the unconstraint 5PL curve model (DSSasym), and a selective asym-
metric DSS (sDSSasym) in case the measurements for a control sample or 
a healthy (reference) samples are provided. The computed metrics and a 
dose-response curve for each fitted therapy can be downloaded as a 

spreadsheet [Supplementary Table 8]. Therapy top hits can be visual-
ized as a waterfall plot interactively using either metric (DSSasym or 
sDSSasym). Additionally, the MRA-mod uses the coefficient of determi-
nation (R2) between the fitted and the observed inhibition values as a 
goodness of fit (GOF) measure for each therapy and re-ranks therapies 
using the adjusted DSSasym (DSSasym,adj) and sDSSasym,adj values [Sup-
plementary Fig. 2]. The user can select the number of top hits to be 
included and download the plots as an HTML report. Interactive heat-
maps can be explored in a sample-specific manner or visualized as 
comparative heatmaps for a cohort of multiple samples. 

The 5PL model considers the asymmetric coefficient during fitting, 
which is assumed to be equal to one in the state-of-the-art 4PL model. 
Thus, it is expected that the 5PL yields a better or at least as good GOF as 
the 4PL fitting model, since the set of 5PL models is a strict superset of 
4PL models. To validate whether nplr detects the asymmetric advantage, 
we reanalyzed available pharmacogenomic datasets. Raw measure-
ments for drug response profiles were recovered from (i) the Genomics 
of Drug Sensitivity in Cancer (GDSC) [39] dataset, comprising 1109 cell 
lines tested against 250 drugs; (ii) the Institute for Molecular Medicine 
Finland (FIMM) compound testing assay [40], covering 52 drugs across 
50 cancer cell lines; (iii) the Genentech Cell Line Screening Initiative 
(gCSI) [41], profiling 754 cell lines and 16 drugs; and iv) the Oregon 
Health and Science University Breast Cancer Screen by Dr Joe Gray’s lab 
(GRAY) [42], spanning 84 breast cancer cell lines tested against 90 
drugs. Among all the reanalyzed datasets, the asymmetric 5th parameter 
sigmoidal fit was most often the best performing fitting method ac-
cording to the GOF for the drug dose responses tested [Fig. 3a]. 
Although nplr may return another model than 5-PL as the best fitting 
model due to independent initialization of all candidate models, nplr 
was able to detect the advantage of the 5PL model in two thirds of the 
curves, while yielding the most commonly used 4PL result in another 
25% of curves. [Fig. 3b] shows that nplr couldn’t capture the advantage 

Fig. 2. Overview of Quality Control and Normalization module output. A demo QCN output based on a drug sensitivity profiling of a BT-40 cell line using the 
ATP-based cell viability readout (CTG). (a) Raw measurement distribution, representing log10(raw counts) per screened plate. (b) Plate layout distribution of empty 
wells (with no cells), negative control wells (Dimethyl sulfoxide - DMSO), positive control wells (Benzethonium Chloride - BzCl), sample (tested therapies), therapy 
control wells (TRC; Staurosporine), and untreated wells (cells in culture media only). (c) log10(raw count) distribution per well type per plate. (d) Correlation plot of 
replicate screens. (e) Raw viability plot for positive (upper panel) and negative (lower panel) controls distributed per plate, where the positive controls show low 
viability raw counts (blue), and the negative controls show a higher viability (white – light red). (f) Z-transformed and raw viability plate heatmaps with a divergent 
color scale between low viability values (blue) and high viability values (red). (g) Therapy control response curve. STS was measured as quadruplicates for five 
concentrations per plate (n = 3). Gray area above and below the curve indicates the goodness of the model fit as statistical measure. 
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in one third of the curves because either 4PL models could be fit with a 
high GOF (dose-response curves for which a 4PL model can be fit 
without detriment), or 2PL/3PL models were the best fit but still had a 
low GOF, indicating curves of bad quality, which can be excluded by 
down-weighting using the DSSasym,adj metric available in the MRA-mod. 
[Fig. 3c] demonstrates in one representative example the difference in 
curve fitting and the GOF between the 2PL and 5PL models. 

3.4. Combination therapy response analysis module (CRA-mod) detects 
combination synergy hits in a cost-effective approach 

iTReX includes a module to analyze combination screens, which can 
be based on a monotherapy library screen and a combination library 
screen, in which a specific treatment is added at a single concentration 
on top of the concentration range of the full drug library. These minimal- 
input combination screens were previously described by Lanevski et al. 
as a cost-effective experimental design with DECREASE tool [56]. 
Moreover, a similar combination screen was conducted by Oppermann 
et al. [24], where the experimental aim was to detect the maximum 
combination enhancements of a 380 kinase inhibitor library in combi-
nation with a specific inhibitor chosen at a fixed concentration, hence 
one fixed concentration of a drug (Venetoclax at 10 nM) was added to 
each of the drugs included in the full kinase inhibitors library. Such an 
experimental setting can be of advantage in case of limited 
patient-derived material and may be used as an exploratory analysis for 
preliminary hit identification of synergistic combination therapies. This 
could be achieved by combining a single concentration of one or more 
monotherapy top hit(s) to a library of therapy options, tested in several 
concentrations. However, the use of multi-parametric quantitative 
sensitivity metrics, such as the DSS, were not implemented previously to 
detect synergy and antagonism in combination settings. Hence, the 
CRA-mod was introduced within iTReX to aid the computational anal-
ysis of the minimal-input combination screens. iTReX can analyze 
combinations of different therapy types, such as drug-drug and or 

drug-radiation based profiling. The CRA-mod compares the DSSasym of 
the combined therapeutic agent to the respective tested monotherapy in 
an asymmetric differential combination drug sensitivity score (dcDSSa-

sym) and visualizes dose response curves of both, combination and 
monotherapy in one plot to indicate possible synergistic (left), additive 
(middle) and antagonistic effects (right) [Fig. 4a, b]. Furthermore, a 
matrix of differential Percentage Inhibition (dPI) values per applied dose 
can be calculated and visualized in a heatmap view to identify top hit 
therapies per dose, thus allowing the classification of potentially 
antagonistic (dPI < 0), additive (dPI = 0) or potentially synergistic (dPI 
> 0) effects per dose. Differential percentage inhibition is shown as 
example for the drugs that showed an enhanced effect according to the 
dcDSS metric (dcDSSasym > 0) in [Fig. 4d]. CRA-mod analysis output can 
be downloaded as a spreadsheet including the detailed calculation 
outputs [Supplementary Table 9]. We demonstrate the functionalities of 
the CRA-mod using a combination drug screening on cells derived from 
a neuroblastoma PDX model INF_R_1632. The model was developed 
from a tumor biopsy sample of a neuroblastoma patient enrolled in the 
INdividualized Therapy FOr Relapsed Malignancies in Childhood 
(INFORM) registry study [57]. Here, Trametinib was combined at a 
concentration of 10 nM with a drug library of 76 compounds tested at 
five concentrations per drug [Supplementary Fig. 3]. The module output 
is shown in [Fig. 4]. Nilotinib was detected as the most efficient drug in 
combination with Trametinib, indicated by a dcDSSasym of 6.22, fol-
lowed by Mitoxantrone, Navitoclax, Venetoclax and Cisplatin as the top 
5 hits for combination therapy based on the dcDSSasym [Fig. 4b]. The 
synergistic effect between Nilotinib and MEK inhibitors has been also 
previously reported by several tumor models [58–60]. [Fig. 4c] dem-
onstrates the synergistic effect of Trametinib (10 nM) and Nilotinib in 
the INF_R_1632 combination screen. Furthermore, the screen identifies 
the combination of Volasertib (PLK1 inhibitor) and Trametinib as ad-
ditive, indicated by an overlap of both dose response curves for mono- 
and combination therapy [Supplementary Fig. 4], and dPI values around 
zero for each of the tested concentrations and a dcDSSasym near zero (- 

Fig. 3. Weighted n-parameter dose-response fitting performance across pharmacogenomic datasets. (a) Pie charts illustrating the ratio of the selected best 
performing logistic model based on the goodness of fit. (b) Adjacent box and half violin plots showing the goodness of fit distribution among the selected best 
performing fitting parameter across different datasets. (c) Difference between the constraint fit 2PL method (red) and the 5PL (blue) curve fitting. 
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0.51). Notably, in case of additive effects both dose response curves aid 
to be overlapping due to the normalization procedure of single agent 
versus combination therapy separately to their respective controls. The 
potential for combining MEK inhibitors (i.e., Trametinib) with PLK1 

inhibitors (Volasertib) was previously reported for malignant mela-
nomas and melanoma cell lines, supporting a correlation between MEK 
and PLK1 signaling [61–63]. 

To validate the performance of the CRA-mod algorithm in detecting 

Fig. 4. CRA-mod analysis and visualization outputs. A combination therapy response analysis screen of cells derived from a neuroblastoma PDX model 
(INF_R_1632). Trametinib (IC25 ~ 10 nM) was combined with the full concentration range of a 76 drug library. (a) The differential combination drug sensitivity 
score (dcDSSasym) calculation as mathematical demonstration of possible combination scenarios, reflecting the area between the monotherapy and the combination 
therapy dose-response curve after achieving the minimum activity threshold (Amin). The Amin is 10% of the maximum achievable inhibition. The plot represents a 
mathematical demonstration of the expected output of a synergistic combination effect, where the combination therapy DSSasym exceeds the DSSasym value of the 
monotherapy (left), an expected additive effect (middle), and the antagonistic effect (right). (b) Waterfall plot representing the dcDSSasym score calculated to 
compare combination and monotherapies, where the blue bars indicate a positive enhanced effect of the combination therapy (i.e., a positive dcDSSasym). The red 
bars indicate an combination effect with a negative dcDSSasym. The additive effect of Trametinib in combination with other drugs with a dcDSSasym score of zero are 
aligned between the enhanced and the antagonistic agents bar plots. (c) Synergistic dose-response curves of Nilotinib-Trametinib combination therapy (deep-pink) 
and Nilotinib monotherapy (blue) from the CRA analysis output of INF_R_1632 PDX model. (d) Matrix plot of top hit therapy combinations representing the dif-
ferential percentage inhibition (dPI) of each drug (five concentrations along matrix rows) in difference between the combination and monotherapy percent-
age inhibition. 
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synergism with a reduced cost-effective experimental approach we used 
HT drug combination screening data published by O’Neil et al. [64]. 
This dataset includes 22,737 experiments for 583 drug combinations 
tested on 39 cancer cell lines using a 4 × 4 dosing regimen, where Bliss 
scores above 0.12 were considered synergistic combinations and the 
Highest Single Agent (HSA) scores less than 0.12 were considered 
antagonistic [32]. The CRA-mod was able to reproduce the results 
[Fig. 5] reported by O’Neil et al. using the minimal-input combination 
analysis method. The minimal-input was achieved by combining a single 
concentration nearest to IC25 of monotherapy hits, which showed a 
DSSasym above 10 to the full concentration ranges of the monotherapy 
library computed by the MRA-mod. Using the minimal-input approach 
we were able to reduce the O’Neil et al. dataset to include 9652 ex-
periments among 551 combinations in the CRA-mod analysis. Using the 
iTReX CRA-mod, we identified top combination hits, which were in line 
with the reported synergies among the tested cell lines [64]. The 
reproduced top enhanced combination effects included the Wee1 in-
hibitor (AZD1775), in combination with the ChK1 inhibitor (MK8776), 
and the PARP inhibitor (MK4827) in combination with Temozolomide. 
The Wee1-ChK1 synergy has also been confirmed in an ex vivo screening 
study of acute myeloid leukemia [65], and explained by synergistic DNA 
damage during the S-phase by Hauge et al. [66]. The PARP inhibitors 
have shown synergistic effects in combination with Temozolomide in 
vitro and in vivo [67], in addition to a synergistic effect of the later 
combination therapy in a PDX co-clinical trial on relapsed small-cell 
lung cancers [68] and Ewing’s sarcoma cells [69]. Thus, the CRA-mod 
is able to analyze minimal-input combination screens and captures 
possible combination treatment similar to the large effort matrix screen. 
We conclude that this approach could be used as a first screening 
approach allowing to test multiple combinations in a primary setting 
with the need of less sample material and drug amount to identify po-
tential combination hits, which can then be further validated in larger 
preclinical synergy screens. 

3.5. HitNet-mod and Omics-mod detect matches between top therapy hits 
and molecular profiles of ex vivo PDCs and identify potential druggable 
biomarkers using drug target interaction network mapping 

Prior knowledge networks of interactions and roles of proteins in 
intra- and intercellular signal transduction, as well as transcriptional 
and post-transcriptional regulation, can give biological insights into the 
mechanisms of drug target interactions. To provide a comprehensive 
view of selected drug hits, iTReX enables users to explore the in-
teractions between top hit drugs and their targets. 

To enable a network-based overview of drug target interactions and 
the visual exploration of signaling pathways, cross-talks and multi- 
pathway proteins we have used the HitNet-mod by visualizing top hit 
drug target genes interactions using pathway information from Omni-
Path [37]. Furthermore, the Omics-mod can be used to map the mo-
lecular profile on the drug targets interaction network of the sample. To 
this end, the user can upload a tabulated file with HUGO gene symbols of 
the molecular events per sample (e.g., gene fusions, single nucleotide 
variants, and insertions and deletions). 

To demonstrate the use of HitNet and Omics-mod within the appli-
cation, we provide examples of ATP-based cell viability screens of two 
pediatric cancer cell models, where we were able to match the drug 
target information with relevant molecular aberrations present in these 
cells. We explored these datasets using the functionalities of HitNet and 
Omics-mod. First, a monotherapy drug screen (BT-40_V1_DS1, referred 
to as BT-40 except in conjunction with other replicate screens) was 
conducted for the human low grade glioma cell line model, which har-
bors a BRAF (proto-oncogene B-Raf) V600E mutation and CDKN2A 
(Cyclin Dependent Kinase Inhibitor 2A) deletion [46,70]. BT-40 cells 
were screened as 3D spheroids in a round-bottom 384-well plate against 
a drug library of 76 (73.5% FDA/EMA approved) drugs, each in 5 con-
centrations and ATP-based cell viability was detected by CellTiterGlo2.0 
assay. The measured drug profiling raw data [Supplementary Table 4] 

Fig. 5. Reproducibility of CRA-mod using the Merck combination synergy screen dataset. (a) The Merck dataset CRA-mod output, in red is the enhanced effect 
drug combinations, while the antagonist effect is indicated in green. The top two enhanced combination effects are labeled with asterisks (MK8776-AZD1775) and 
(MK4827-Temozolomide). The red divergent scale represents the synergistic median value of the dcDSSasym, while the green color divergent scale represents the 
antagonistic values of the median dcDSSasym metric. Both color intensity and dot size reflect the absolute magnitude of the median of the measured score (dcDSSasym). 
(b) Reproducibility of the Merck dataset synergistic results, comparing median Bliss independent synergy scores to the median dcDSSasym scores. Bliss scores higher 
than 0.12 indicate synergistic effects, while combinations shown in gray are considered non-synergistic. (c) Reproducibility of the Merck dataset antagonistic results, 
comparing median HSA scores to the median dcDSSasym scores. HSA scores below 0.12 (green) indicate antagonism. 
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were analyzed using the QCN and MRA-mod, where the sDSSasym was 
calculated using the mean DSSasym values obtained from the same drug 
profiling on a healthy (reference) sample consisting of 5 pediatric 
healthy control cell samples (astrocytes and peripheral blood mono-
nuclear cells – PBMCs) [Supplementary Table 10]. The output of the 
MRA-mod analysis indicates a selective sensitivity of several therapies 
on the BT40 tumor cell line compared to the healthy (reference) samples 
as shown in the waterfall plot in [Supplementary Fig. 2b], indicated by 
blue bars for a positive sDSSasym metric while red negative bars repre-
sent a negative sDSSasym where the healthy (reference) samples show a 
higher sensitivity over the BT-40 cells. A full tabulated spreadsheet of 
the MRA-mod output of the BT-40 cell screen can be downloaded and 
explored with the drug scores and dose response curves [Supplementary 
Table 8]. 

In order to visualize the drug interaction networks using the HitNet 
module, the drug target genes were annotated to the 76 drug library 
using the DrugBank database (v.5.1.8) [71], and uploaded to the 
HitNet-mod. The module features an interactive slider bar to enable the 
user to adjust the number of drugs that should be included in the 
network visualization. The number of drug hits can be selected based on 
the DSSasym or sDSSasym (MRA output). For the BT-40 cells the minimum 
required number of hits (threshold) to capture drug-drug interactions 
was four [Supplementary Table 8]. The Omics-mod performs a similar 
visualization of the drug interactions network with an extra layer of 
color mapping for the molecular features of the sample (if available) on 
top of the drug-drug interaction network. This was performed for the 
BT-40 cells by uploading a tabulated spreadsheet including the molec-
ular features of the cells. The molecular features were uploaded as 
HUGO symbols of gene fusions, highly expressed genes, single nucleo-
tide variant mutations (SNVs), and gene insertions and deletions 
(INDELs) [Supplementary Table 11]. The Omics-mod output revealed 
several mutational events occurring within the drug target interaction 

network, with a match between both selective BRAF V600E inhibitors 
included in the library (Dabrafenib) and BRAF single nucleotide variant 
mutation [Fig. 6a]. Furthermore, the BT-40 cell also showed selectivity 
towards the second BRAF inhibitor included in the library (Vemur-
afenib) with an sDSSasym value of (12.3). The second screen with the 
same 76 drug library was performed for a sarcoma cell line [Supple-
mentary Table 12], established from a pediatric soft tissue sarcoma 
patient, previously enrolled in the INFORM registry study 
(INF_R_153_V1_DS1 cell line), and harboring an ETV6-NTRK3-fusion 
(ETS Variant Transcription Factor 6 - Neurotrophic Receptor Tyrosine 
Kinase 3) fusion. The screen was analyzed using QCN-mod and 
MRA-mod similar to the BT-40 cells, the MRA-mod tabulated output 
[Supplementary Table 13] and sDSSasym waterfall plots [Supplementary 
Fig. 5a] were explored as described above. The molecular features of the 
INF_R_153 cell line sample [Supplementary Table 14] were uploaded to 
Omics-mod. Seven drugs with the highest sDSSasym scores were chosen 
as threshold to generate an interaction network featuring the 
NTRK3-fusion. The Omics-mod identified a match between the NTRK 
inhibitor (Larotrectinib) and the NTRK3 fusion included in the uploaded 
molecular features of the INF_R_153 cell model. Moreover, Ponatinib 
was indicated among the selective hit compounds for the INF_R_153 cell 
line within the MRA mode as indicated by sDSSasym metric of 15.9, 
which is close to the sensitivity score of Larotrectinib (16.2) [Supple-
mentary Fig. 5b, c]. The Omics-mod identified several other highly 
expressed biomarkers (GNAI2, GNAI3, CSK, and EPHB2) beside the 
driver NTRK3 fusion, which may explain the link to the sensitivity to 
Ponatinib for this particular sample. Ponatinib is an orally active 
multi-TKI, targeting also ABL; SRC and KIT, which was highly expressed 
in our soft tissue sarcoma cell model based on RNA sequencing data and 
act upstream of the identified expressed biomarkers [Fig. 6b]. 

The MRA-mod output results for the sensitivity of the 76 drug library 
used to screen both cell line models, BT-40 and INF_R_153, and their 

Fig. 6. sDSSasym Drug target interaction network maps using the Omics module. (a) BT-40 model top drug target interaction map (threshold = 4) using the 
Omics-mod, where squares are drug targets annotated using DrugBank (v5.1.8) and circles are gene biomarker signaling interactions. Different genetic molecular 
events are distinctly colored, green nodes represent gene variant mutations; olive green nodes represent highly expressed genes. (b) INF_R_153 cell line model top 
drug target interaction map (threshold = 7) using Omics-mod, where the yellow nodes characterize gene fusions, drug targets were annotated using Drug-
Bank (v5.1.8). 
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biological replicates were used to explore the selectivity of the predicted 
activity of the BRAF inhibitors and NTRK inhibitors. The sDSSasym 
metric was used to visualize the selectivity of the therapies in a heatmap 
[Supplementary Fig. 6], where the NTRK inhibitors (Larotrectinib and 
Entrectinib) were selectively sensitive to both cell replicates harboring 
the NTRK3 fusion (INF_R_153_V1_DS1 and INF_R_153_V2_DS1). More-
over, the heatmap revealed the selectivity of the BRAF inhibitors 
(Vemurafenib and Dabrafenib) on cells harboring the BRAF mutation 
(BT-40_V1_DS1 and BT-40_V3_DS1). Both cell line models serve as a 
negative control for each other as indicated in the annotated alterations 
per cell line [Supplementary Fig. 6]. The heatmap includes further 
annotation of the expression levels of the potential biomarkers that may 
explain the interaction between Larotrectinib and Ponatinib, as indi-
cated in the Omics-mod [Fig. 6b], where the EPHB2 biomarker was 
selectively expressed in the NTRK3 model. 

4. Discussion 

The field of therapy response profiling is evolving rapidly in both the 
experimental and computational methods [72,73]. However, it remains 
challenging for researchers without a bioinformatics background to 
explore and analyze therapy response profiles with the latest algo-
rithmic developments. It is thus beneficial to have a non-programming 
application with a graphical user interface that includes 
state-of-the-art algorithms as routine procedures in the hands of the 
bench scientists who generate therapy response profiling data. Hence, 
iTReX, our interactive Shiny web-based application, was developed and 
designed to analyze and explore mono- and combination therapy 
dose-response data. The comprehensive application provides a complete 
workflow including five modules with an intuitive graphical user 
interface aiming to cover both mono- and combination therapy profiling 
analysis and to visualize drug target interaction networks and map 
omics features to the network. iTReX includes an asymmetric drug 
sensitivity score, motivated by our validation results showing the 
prevalence of the asymmetric sigmoidal behavior of dose-response 
curves among various public drug screening datasets [39–42]. The 
asymmetric DSS is calculated by integrating the drug response after 
normalization to positive and negative controls and fitting an asym-
metric five-parameter curve model. We show that iTReX can further 
identify the enhanced effects of drug combinations and reproduce syn-
ergy findings from earlier published synergy data set [64] using the 
CRA-mod, which integrates the differential combination asymmetric 
DSS calculation. This enables the minimal-input experimental set-up, 
which is ideally developed for preclinical combination studies for 
PDCs [24,74] or for the first investigational screen for novel drug 
combinations or drug repositioning opportunities. 

Unlike previously developed interactive web-based applications 
[25–28], iTReX includes the advanced asymmetric fitting approach and 
surpasses other platforms by including the analysis of combination 
therapies. Other applications such as SynToxProfiler [30] and Syn-
ergyFinder [31] were developed to analyze combination synergy matrix 
screens only while lacking the monotherapy exploration. In addition, 
none of the previously developed platforms enable the visualization of 
drug target interactions and mapping the omics molecular features to 
the network after processing the therapy response raw data. Using 
iTReX, omics profiles of any screened models such as patient-derived 
primary samples can be integrated to construct a drug-target interac-
tion network. The constructed interaction maps show the power of 
matching drug hits to potential biomarkers and molecular targets for 
further exploration e.g., in clinical trials. This approach can also be used 
to construct interaction connectivity networks between top hit enhanced 
drug combinations, leading to a better understanding of interaction 
mechanisms of combinations in individual samples. The module can 
further capture matches between molecular features of a respective 
sample, i.e., cell line or patient derived sample, to their respective high 
drug sensitivity targets. 

To guide the user through the processing and interpretation of the 
generated raw data, a step-by-step user manual is provided within the 
iTReX application for download. This supports the user in data and 
layout preparation as well as data exploration and interpretation of re-
sults and provides data demonstration files, providing the user with an 
idea what to expect for the iTReX analysis output. Importantly, as data 
output and results highly depend not only on sample behavior, screening 
and/or drug/therapy quality, we recommend to first investigate the 
quality control output and proceed only with the analysis for screens 
with a good QC, judged by the QC metrics, plate overview for possible 
edge effects and therapy control behavior if applicable. Moreover, for 
interpretation of a combinatorial therapy response output (CRA) we 
recommend to consider all three indicators, the differential combination 
asymmetric Drug Sensitivity Score (dcDSSasym), the percentage inhibi-
tion (dPI) per dose as well as the dose response curves of combo and 
monotherapy. In rare cases the synergy and antagonism curve shift may 
be influenced by the curve fitting with a false interpretation. Thus, the 
dPI values are essential to confirm the results of the dcDSSasym metric. A 
positive dcDSSasym and positive dPI values indicate a synergistic effect, 
while a negative dcDSSasym confirmed by negative dPI values indicate an 
antagonistic effect. Additive effects are indicated by overlapping dose 
response curve of the mono- and combo therapy with dcDSS and dPI 
near zero. Identified hits could be further validated in extended matrix 
screens with multiple concentrations per combination partner. 

In the future, we will enrich iTReX modules to include additional 
analysis and visualization capacities. For instance, we will further 
implement the possibility for testing multiple concentrations of a com-
bination partner added to the concentration range of a library drug and 
will furtherly work on implementing improvements based on users re-
quests which can be raised through the contact information within the 
application. The iTReX MRA-mod can be further upgraded by including 
the computation of the normalized growth rate inhibition method 
(GRmetrics) [27] that addresses the limitation of cell proliferation rates 
and the variability of drug concentration ranges applied. The 
Omics-mod can also integrate correlation and statistical analysis of 
omics data to the therapy profiling results. We will update iTReX to the 
newest developments of therapy profiling algorithms and improve the 
tool to benefit bench scientists towards precision medicine. 

5. Conclusion 

iTReX allows users to explore drug screening results using interactive 
visualizations in a sample-specific manner. Moreover, project cohorts 
analyzed with the MRA and CRA modules can be visualized in a 
comparative heatmap. Accordingly, both modules enable the explora-
tion of data clusters and thus can be used for hypothesis generation for 
preclinical and clinical studies. The HitNet and Omics module example 
cases show how iTReX can advance our views of the biological questions 
under investigation. Results can support the identification of sample- 
specific druggable biomarkers and do not only foster individual treat-
ment decisions but also support hypothesis-driven clinical trial designs. 
iTReX can also act as a personalized exploratory analysis hub for mono- 
and combination therapy from different screening methods and exper-
imental settings. It is expected that a wide range of users, such as bi-
ologists, chemists, pharmaceutical and medical researchers or 
pharmaceutical companies exploring therapy response data, will benefit 
from the web application, especially in the area of personalized medi-
cine, where functional treatment profiling is used as a complementary 
approach to genomic profiling. 

Declarations 

Ethics approval and consent to participate 

For material obtained from patients included in the INFORM study, 
ethics approval was obtained by the Ethics Committee (EC) of the 

D. ElHarouni et al.                                                                                                                                                                                                                             



Pharmacological Research 175 (2022) 105996

13

Medical Faculty, University of Heidelberg (reference number S-502/ 
2013). Details of the INFORM study including Ethics Commitee approval 
and patient consent is described by Pfaff et al. [47]. 

Patients’ and parents’ written informed consents (Informed Consent 
Forms (ICFs)) were obtained prior to submission and use of tumor tissue 
in this study. This includes use of subjects’ tumor tissue for research 
purposes including drug sensitivity profiling and molecular analysis. 

The animal PDX experiment performed was conducted in compliance 
with the national regulations and approved by the Regierungspräsidium 
Karlsruhe. 

Consent for publication 

Consent to publish and to report individual patient data has been 
obtained from patients and parents and is covered through the written 
informed consents (ICFs) as described in the ethics approval and consent 
to participate section. 

Code availability 

The iTReX application is available as a Shiny-based GUI suitable for 
non-R users at https://itrex.kitz-heidelberg.de. Code is available at 
http://github.com/the iTReX-Shiny/iTReX. 

Funding 

This study was supported in parts by funding obtained for the 
COMPASS project (Clinical implementation Of Multidimensional 
PhenotypicAl drug SenSitivities in pediatric precision oncology). 
COMPASS is funded by the Federal Ministry of Education and Research 
(BMBF) (grant 01KU1903) for DKFZ and Academy of Finland (grant 
326249) for FIMM under the frame of ERA PerMed (ERAPERMED2018- 
121). This work has been supported by SFB 1389-UNITE Glioblastoma, 
Work Package A02 (OW) and D02 (DH, MS). IO has received funding by 
the German Cancer Aid, grant 70113843. The study was further sup-
ported in part by Kirstins Weg – Verein zur Förderung der Krebsmedizin 
e.V., and by the Kirstin Diehl-Stiftung (SO, OW). 

This work is part of the INFORM registry study (German Clinical 
Trials Register ID: DRKS00007623), funded by the German Cancer 
Consortium (DKTK), the German Cancer Aid (DKH), the German 
Childhood Cancer Foundation (DKS), the German Cancer Research 
Center (DKFZ) and “Ein Herz für Kinder”. 

Author’s contributions 

DE: implemented the Shiny application, conducted bioinformatics 
analysis, and drafted the manuscript. YB: contributed to code 
improvement, implementation and testing of the Shiny application. HP: 
resourced and drafted laboratory methods of cell cultures. IO, VP: su-
pervised laboratory methods of cell cultures. VP, SO: drafted laboratory 
methods of drug screening and contributed to drug plate layout design 
and laboratory methods of cell cultures. LT: drafted drug plate layouts, 
resourced and prepared drug solutions and their dispensing and 
managed plate shipments. YB, HP, IO, NJ, SO, MS: contributed to soft-
ware testing. AG: processed the Whole Exome Sequencing (WES) no 
control workflow. SK, SH: resourced and established the PDX model. NJ, 
MS: assisted and supervised Omics analysis. OW, MS, SO: provided 
financial support. SO, MS: conceived the Shiny application and 
contributed to development, supervised the study and drafted the 
manuscript. All authors read, commented and approved the final version 
of the manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper. 

Availability of data and materials 

The pharmacogenomic raw data of the GDSC, FIMM, gCSI, and GRAY 
datasets can be directly accessed from the PharmacoGx package [26]. 

The O’Neil et al. [64], 2016 Merck dataset was obtained by down-
loading the Supplemental data files associated with O’Neil et al. 

The calculated Bliss independent synergy scores and HAS values for 
the O’Neil data set were downloaded from the DrugComb portal [32], 
using the following web link: https://drugcomb.fimm.fi. 

Tabulated data inputs for the PDX combination screen, and the BT-40 
human established cell lines are available on https://github. 
com/iTReX-Shiny/iTReX Further raw data of human established cell 
lines and the healthy (reference) sample repository can be obtained 
upon reasonable request from the authors. 

Acknowledgments 

We would like to thank Peter J. Houghton (UT Health, San Antonio, 
Texas) for providing the BT-40 cell line, and Prof. Ewa Koscielniak 
(Klinikum Stuttgart, Germany) for providing the INF_R_153 cell line. 
Cancer Society of Finland, Academy of Finland, and Aamu foundation 
are acknowledged for further funding obtained for VP. Furthermore, we 
thank the High Throughput Biomedicine core unit of Biocenter Finland 
(FIMM, HiLIFE, University of Helsinki, Finland), particularly Jani 
Saarela and Swapnil Potdar for their expertise on assay design and 
analysis discussions. We thank Olli Kallioniemi for collaboration and 
hosting a laboratory visit of S.O. and H.P. (FIMM, HiLIFE, University of 
Helsinki, Finland). We thank Piia Mikkonen, Clarissa Holitsch, Aileen 
Mangang for their support in the laboratory work of the ex vivo cell 
culture and drug screening. We also thank Rolf Kabbe and Michael Hain 
for their IT assistance and support deploying the app. Finally, we thank 
the High Throughput Sequencing unit of the DKFZ Genomics and Pro-
teomics Core Facility for providing the next generation sequencing 
service and the Omics IT and Data Management Core Facility (ODCF) for 
the alignment of the Whole Exome Sequencing (WES) data and pro-
cessing the RNAseq workflow. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.phrs.2021.105996. 

References 

[1] J.G. Moffat, F. Vincent, J.A. Lee, J. Eder, M. Prunotto, Opportunities and challenges 
in phenotypic drug discovery: an industry perspective, Nat. Rev. Drug Discov. 16 
(8) (2017) 531–543, https://doi.org/10.1038/nrd.2017.111. 

[2] B. Yadav, T. Pemovska, A. Szwajda, E. Kulesskiy, M. Kontro, R. Karjalainen, M. 
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P. Fiesel, M.C. Frühwald, P. Hernáiz Driever, U.W. Thomale, M.U. Schuhmann, 
M. Metzler, K. Bochennek, T. Simon, M. Dürken, M. Karremann, S. Knirsch, 
M. Ebinger, A.O. von Bueren, T. Pietsch, C. Herold-Mende, D.E. Reuss, K. Kiening, 
P. Lichter, A. Eggert, C.M. Kramm, S.M. Pfister, D. Jones, H. Bächli, O. Witt, 
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B. Burkhardt, W. Wößmann, M. Nathrath, S.S. Bielack, M.C. Frühwald, S. Fulda, 
T. Klingebiel, E. Koscielniak, M. Schwab, R. Tremmel, P.H. Driever, J.H. Schulte, 
B. Brors, A. von Deimling, P. Lichter, A. Eggert, D. Capper, S.M. Pfister, D.T. Jones, 
O. Witt, Next-generation personalised medicine for high-risk paediatric cancer 
patients – the INFORM pilot study, Eur. J. Cancer 65 (2016) 91–101, https://doi. 
org/10.1016/j.ejca.2016.06.009. 

[58] L.M. Packer, S. Rana, R. Hayward, T. O’Hare, C.A. Eide, A. Rebocho, S. Heidorn, M. 
S. Zabriskie, I. Niculescu-Duvaz, B.J. Druker, C. Springer, R. Marais, Nilotinib and 
MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in 
drug-resistant chronic myeloid leukemia, Cancer Cell 20 (2011) 715–727, https:// 
doi.org/10.1016/j.ccr.2011.11.004. 

[59] M. Ranzani, K. Kemper, M. Michaut, O. Krijgsman, N. Aben, V. Iyer, K. Wong, T. 
I. Roumeliotis, M. Velasco-Herrera, J. Nsengimana, G. Turner, N. Thompson, 
A. Shahrabi, M. Sjoberg, M. Rashid, A.O. Speak, V. Grinkevich, F. Behan, 
D. Tamborero, F. Iorio, S. van Dongen, G.R. Bignell, C. Alsinet, S. Chen, E. Supper, 
K. Dutton-Regester, A. Pritchard, C. Wong, A. Enright, J. Newton-Bishop, 
U. McDermott, N.K. Hayward, J.S. Choudhary, K. Yusa, L. Wessels, M.J. Garnett, 
D. Peeper, D.J. Adams, A screen for combination therapies in BRAF/NRAS wild 
type melanoma identifies nilotinib plus MEK inhibitor as a synergistic 
combination, bioRxiv (2017), https://doi.org/10.1101/195354. 

[60] N. Tan, M. Wong, M.A. Nannini, R. Hong, L.B. Lee, S. Price, K. Williams, P.P. Savy, 
P. Yue, D. Sampath, J. Settleman, W.J. Fairbrother, L.D. Belmont, Bcl-2/Bcl-xL 
inhibition increases the efficacy of MEK inhibition alone and in combination with 
PI3 kinase inhibition in lung and pancreatic tumor models, Mol. Cancer Ther. 12 
(2013) 853–864, https://doi.org/10.1158/1535-7163.MCT-12-0949. 

[61] C. Posch, B.D. Cholewa, I. Vujic, M. Sanlorenzo, J. Ma, S.T. Kim, S. Kleffel, 
T. Schatton, K. Rappersberger, R. Gutteridge, N. Ahmad, S. Ortiz/Urda, Combined 
inhibition of MEK and Plk1 has synergistic antitumor activity in NRAS mutant 

melanoma, J. Investig. Dermatol. 135 (10) (2015) 2475–2483, https://doi.org/ 
10.1038/jid.2015.198. 

[62] H.Y. Chen, J. Villanueva, Playing polo-like kinase in NRAS-mutant melanoma, 
J. Investig. Dermatol. 135 (10) (2015) 2352–2355, https://doi.org/10.1038/ 
jid.2015.253. 

[63] H.L. Vu, A.E. Aplin, Targeting mutant NRAS signaling pathways in melanoma, 
Pharmacol. Res. 107 (2016) 111–116, https://doi.org/10.1016/j. 
phrs.2016.03.007. 

[64] J. O’Neil, Y. Benita, I. Feldman, M. Chenard, B. Roberts, Y. Liu, J. Li, A. Kral, 
S. Lejnine, A. Loboda, W. Arthur, R. Cristescu, B.B. Haines, C. Winter, T. Zhang, 
A. Bloecher, S.D. Shumway, An unbiased oncology compound screen to identify 
novel combination strategies, Mol. Cancer Ther. 15 (2016) 1155–1162, https:// 
doi.org/10.1158/1535-7163.MCT-15-0843. 

[65] L. Chaudhuri, N.D. Vincelette, B.D. Koh, R.M. Naylor, K.S. Flatten, K.L. Peterson, 
A. McNally, I. Gojo, J.E. Karp, R.A. Mesa, L.O. Sproat, J.M. Bogenberger, S. 
H. Kaufmann, R. Tibes, CHK1 and WEE1 inhibition combine synergistically to 
enhance therapeutic efficacy in acute myeloid leukemia ex vivo, Haematologica 99 
(2014) 688–696, https://doi.org/10.3324/haematol.2013.093187. 

[66] S. Hauge, C. Naucke, G. Hasvold, M. Joel, G.E. Rødland, P. Juzenas, T. Stokke, R. 
G. Syljuåsen, Combined inhibition of Wee1 and Chk1 gives synergistic DNA 
damage in S-phase due to distinct regulation of CDK activity and CDC45 loading, 
Oncotarget 8 (2017) 10966–10979, https://doi.org/10.18632/oncotarget.14089. 

[67] A. van Erp, L. van Houdt, M. Hillebrandt-Roeffen, N. van Bree, U.E. Flucke, 
T. Mentzel, J. Shipley, I. Desar, E. Fleuren, Y. Versleijen-Jonkers, W. van der Graaf, 
Olaparib and temozolomide in desmoplastic small round cell tumors: a promising 
combination in vitro and in vivo, J. Cancer Res. Clin. Oncol. 146 (2020) 
1659–1670, https://doi.org/10.1007/s00432-020-03211-z. 

[68] A.F. Farago, B.Y. Yeap, M. Stanzione, Y.P. Hung, R.S. Heist, J.P. Marcoux, J. Zhong, 
D. Rangachari, D.A. Barbie, S. Phat, D.T. Myers, R. Morris, M. Kem, T.D. Dubash, E. 
A. Kennedy, S.R. Digumarthy, L.V. Sequist, A.N. Hata, S. Maheswaran, D.A. Haber, 
M.S. Lawrence, A.T. Shaw, M. Mino-Kenudson, N.J. Dyson, B.J. Drapkin, 
Combination olaparib and temozolomide in relapsed small-cell lung cancer, Cancer 
Discov. 9 (2019) 1372–1387, https://doi.org/10.1158/2159-8290.CD-19-0582. 

[69] S.J. Gill, J. Travers, I. Pshenichnaya, F.A. Kogera, S. Barthorpe, T. Mironenko, 
L. Richardson, C.H. Benes, M.R. Stratton, U. McDermott, S.P. Jackson, M. 
J. Garnett, Combinations of PARP inhibitors with temozolomide drive PARP1 
trapping and apoptosis in Ewing’s sarcoma, PLOS One 10 (2015), 0140988, 
https://doi.org/10.1371/journal.pone.0140988. 

[70] F. Selt, J. Hohloch, T. Hielscher, F. Sahm, D. Capper, A. Korshunov, D. Usta, 
S. Brabetz, J. Ridinger, J. Ecker, I. Oehme, J. Gronych, V. Marquardt, D. Pauck, 
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