19 research outputs found

    E. coli Microcosms Indicate a Tight Link between Predictability of Ecosystem Dynamics and Diversity

    Get PDF
    The diversity-stability hypothesis proposes that ecosystem diversity is positively correlated with stability. The impact of ecosystem diversity is, however, still debated. In a microcosm experiment using diverged Escherichia coli cells, we show that the fitness of community members depends on the complexity (number of participants) of the system. Interestingly, the spread of a community member with a superior genotype is mostly stochastic in low-complexity systems, but highly deterministic in a more complex environment. We conclude that system complexity provides a buffer against stochastic effects

    Early Embryonic Chromosome Instability Results in Stable Mosaic Pattern in Human Tissues

    Get PDF
    The discovery of copy number variations (CNV) in the human genome opened new perspectives on the study of the genetic causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However, they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual. Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better understand the aetiology of aging and diseases mediated by somatic mutations

    The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development

    Get PDF
    Mammalian G9a is a histone H3 Lys-9 (H3–K9) methyltransferase localized in euchromatin and acts as a co-regulator for specific transcription factors. G9a is required for proper development in mammals as g9a(−)/g9a(−) mice show growth retardation and early lethality. Here we describe the cloning, the biochemical and genetical analyses of the Drosophila homolog dG9a. We show that dG9a shares the structural organization of mammalian G9a, and that it is a multi-catalytic histone methyltransferase with specificity not only for lysines 9 and 27 on H3 but also for H4. Surprisingly, it is not the H4–K20 residue that is the target for this methylation. Spatiotemporal expression analyses reveal that dG9a is abundantly expressed in the gonads of both sexes, with no detectable expression in gonadectomized adults. In addition we find a low but clearly observable level of dG9a transcript in developing embryos, larvae and pupae. Genetic and RNAi experiments reveal that dG9a is involved in ecdysone regulatory pathways

    Genome-Wide Screen for Mycobacterium tuberculosis Genes That Regulate Host Immunity

    Get PDF
    In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain

    Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases

    Get PDF
    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs

    Changes in Allele Frequency at a Microsatellite Marker during the Spread of a Beneficial Mutation

    No full text
    <p>A “snapshot” of the allele distribution in the evolving E. coli population is shown for every eighteenth generation. The number of generations after the start of the experiment is given on the upper right corner of each graph. Bars represent the frequency of the corresponding microsatellite allele. The microsatellite allele carried by the cell with the beneficial mutation (sweeper) is shown in red. The red ellipse indicates the generation at which we isolated the cells used for the competition experiments. Note that for better resolution the scale of the y-axis has been modified between generations 324 and 342.</p

    Relationship between Genetic Diversity of Competitors (Complexity) and Mean Fitness of the Clone Carrying the Beneficial Mutation (Sweeper)

    No full text
    <p>Fitness of the sweeper was determined by competition against a single competitor (lowest level of complexity, far left bar) increasing up to the entire population (highest level of complexity, very right bar). The number of experiments performed for each experimental group and each combination of competitors can be found in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020103#pgen-0020103-t001" target="_blank">Table 1</a>. Error bars indicate the standard deviation of the Malthusian fitness parameter determined by 100 bootstrap pseudoreplicates. The mean of the means and standard deviations of these values are plotted.</p

    Heterogeneity among Replicate Experiments

    No full text
    <p>For each level of complexity (number of competitors) we determined the mean coefficient of variation of three replicate experiments. The number of experiments performed for each experimental group and each combination of competitors can be found in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0020103#pgen-0020103-t001" target="_blank">Table 1</a>. Error bars indicate the standard deviation of 100 bootstrap values obtained by resampling experiments (and the corresponding coefficient of variation).</p
    corecore