174 research outputs found

    Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome

    Get PDF
    Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to “Frankia discariae” with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus

    Permanent Draft Genome Sequences of Three Frankia sp. Strains That Are Atypical, Noninfective, Ineffective Isolates

    Get PDF
    Here, we present draft genome sequences for three atypical Frankia strains (lineage 4) that were isolated from root nodules but are unable to reinfect actinorhizal plants. The genome sizes of Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 were 9.91, 11.20, and 9.43 Mbp, respectively

    Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme

    Get PDF
    A polyphasic study was undertaken to establish the taxonomic provenance of a rapidly growing Mycolicibacterium strain, CECT 8783T, recovered from the plant Stellera chamaejasme L. in Yunnan Province, China. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the strain formed a distinct branch within the evolutionary radiation of the genus Mycolicibacterium . The strain was most closely related to Mycolicibacterium moriokaense DSM 44221T with 98.4 % 16S rRNA gene sequence similarity, but was distinguished readily from this taxon by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity and digital DNA–DNA hybridization values of 79.5 and 21.1 %, respectively. Consequently, the strain is considered, to represent a novel species of Mycolicibacterium for which the name Mycolicibacterium stellerae sp. nov is proposed; the type strain is I10A-01893T (=CECT 8783T=KCTC 19843T=DSM 45590T)

    Permanent Draft Genome Sequence for Frankia sp. Strain Cc1.17, a Nitrogen-Fixing Actinobacterium Isolated from Root Nodules of Colletia cruciata

    Get PDF
    Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus. Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes

    Advanced prokaryotic systematics: the modern face of an ancient science

    Get PDF
    Prokaryotic systematics is one of the most progressive disciplines that has embraced technological advances over the last century. The availability and affordability of new sequencing technologies and user-friendly software have revolutionised the discovery of novel prokaryotic taxa, including the identification and nomenclature of uncultivable microorganisms. These advances have enabled scientists to resolve the structure of complex heterogenous taxon and to rectify taxonomic status of misclassified strains due to errors associated with the sensitivity and/or reproducibility of phenotypic approaches. Time- and labour-intensive experimental characterisation of strains could be replaced with determining the presence or absence of genes or operons responsible for phenotypic and chemotaxonomic properties, such as the presence of mycolic acids and menaquinones. However, the quality of genomic data must be acceptable and phylogenomic threshold values for interspecies and supraspecies delineation should be carefully considered in combination of genome-based phylogeny for a reliable and robust classification. These technological developments have empowered prokaryotic systematists to reliably identify novel taxa with an understanding of community ecology and their biosynthetic and biodegradation potentials

    Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales

    Get PDF
    Frankia sp. strain G2 was originally isolated from Casuarina equisetifolia and is characterized by its ability to nodulate actinorhizal plants of the Rhamnales order, but not its original host. It represents one of the largest Frankia genomes so far sequenced (9.5 Mbp)

    Permanent draft genome sequence of Nocardia sp. BMG111209, an actinobacterium isolated from nodules of Casuarina glauca

    Get PDF
    Nocardia sp. strain BMG111209 is a non-Frankia actinobacterium isolated from root nodules of Casuarina glauca in Tunisia. Here, we report the 9.1-Mbp draft genome sequence of Nocardia sp. strain BMG111209 with a G + C content of 69.19% and 8,122 candidate protein-encoding genes

    Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile

    Get PDF
    A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils

    Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov.

    Get PDF
    Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense . Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900T and SN 1904T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium . The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900T and SN 1904T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900T and SN 1904T form new centres of taxonomic variation within the genus Mycobacterium . Consequently, strains SN 1900T (40T=CECT 8763T=DSM 43219T) and SN 1904T (2409T=CECT 8766T=DSM 43532T) are considered to represent novel species, for which the names Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov. are proposed. A strain designated as ‘ Mycobacterium acapulsensis’ was shown to be a bona fide member of the putative novel species, M. lehmannii
    corecore