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EXTENDED GENOME REPORT Open Access

Permanent draft genome sequence of
Frankia sp. NRRL B-16219 reveals the
presence of canonical nod genes, which are
highly homologous to those detected in
Candidatus Frankia Dg1 genome
Amir Ktari1, Imen Nouioui1, Teal Furnholm2, Erik Swanson2, Faten Ghodhbane-Gtari1, Louis S. Tisa2

and Maher Gtari1*

Abstract

Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus
jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain
NRRL B-16219 is closely related to “Frankia discariae” with a 16S rRNA gene similarity of 99.78%. Because of the lack
of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process
and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were
sequenced, additional genome sequences covering more diverse strains have helped provide insight into the
depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod
genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs
containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes,
561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft
genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first
cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region.
Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia.
PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in
microsymbionts of field collected Ceanothus americanus.

Keywords: Frankia, Actinorhizal symbiosis, Plant-microbe interactions, Genome, Canonical nod genes, Ceanothus

Introduction
The symbiosis resulting from members of the genus
Frankia interacting with the roots of 8 dicotyledonous
plant families (referred to actinorhizal plants) is found
worldwide and contributes to the ability of actinorhizal
pioneer plants to grow in poor and marginally fertile
soils [1]. This symbiotic association has drawn interest
because of its higher rate of soil nitrogen input and the
ability of the plants to overcome harsh environmental

conditions [2]. The molecular mechanism for the estab-
lishment of an actinorhizal nitrogen-fixing root nodule
remains elusive [3]. Molecular phylogeny of the Frankia
genus has consistently identified four main clusters
regardless of the typing locus used [1]. These Frankia
clusters also follow and support the host specificity
groups proposed by Baker [4]. Cluster 1 is divided into
sub-cluster 1a including F. alni and relatives that are in-
fective on Alnus and Myricaceae and sub-cluster 1b
strains that are infective on Allocasuarina, Casuarina
and Myricaceae including F. casuarinae [5]. Cluster 2
contains F. coriariae [6] and uncultured microsymbionts
of Coriariaceae, Datiscaceae, Dryadoideae and
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Ceanothus, while cluster 3, associated F. elaeagni [5], “F.
discariae” [7] and closely related strains are infective on
Colletieae, Elaeagnaceae, Gymnostoma and Myricaceae.
Finally, cluster 4 groups a broad range of non-nitrogen-
fixing and infective strains including F. inefficax species
[8] together with “F. asymbiotica” [9] and other related
strains that are unable to establish a symbiosis with acti-
norhizal plants. As has been established for rhizobial
and arbuscular mycorrhizal symbioes, the LysM-RLKs
are also involved in the perception of Frankia signal
molecules by the actinorhizal plant [10, 11]. However,
the bacterial signals triggering this symbiosis remain un-
known. At present, more than 30 Frankia genomes from
strains in pure culture have been sequenced and anno-
tated [12–30] and two Candidatus genomes were gener-
ated from nodule metagenomes [31, 32]. Analysis of the
Frankia genomes failed to reveal the presence of com-
mon canonical nodABC genes [33] which also appear to
be missing in several photosynthetic [34] and non-

photosynthetic [35] bradyrhizobia. The only exceptions
were found in the two Candidatus Frankia genomes,
which contained the canonical nodABC and sulfotrans-
ferase nodH genes [32, 36]. This contradictory situation
justifies additional sequencing of genomes from culti-
vated Frankia strains to gain insight into the depth of
the pangenome pool covered. Here we report the first
proof of the presence of rhizobial homologous canon-
ical nodABCH genes within the draft genome of culti-
vated Frankia isolate, strain NRRL B-16219 and
widespread occurrence of nodAB in field collected
Ceanothus americanus microsymbionts.

Organism information
Classification and features
Strain NRRL B-16219 metabolizes short fatty acids,
TCA-cycle intermediates and carbohydrates (Table 1). It
is infective on members of Elaeagnaceae and Morella
cerifera and produces effective root nodules [4, 37]. In

Table 1 Classification and general features of Frankia sp. strain NRRL B-16219 according to MIGS [45]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [46]

Phylum Actinobacteria TAS [47]

Class Actinobacteria TAS [48]

Order Frankiales TAS [49]

Family Frankiaceae TAS [50, 51]

Genus Frankia TAS [52, 53]

Species Frankia sp. IDR

Strain NRRL B-16219IDA

Gram stain Positive IDA

Cell shape Filament-shaped IDA

Motility Non-motile NAS

Sporulation Sporulating NAS

Temperature range 25–35 °C TAS [5]

Optimum temperature 28 °C TAS [5]

pH range; Optimum pH 6.3 – pH 6.8 NAS

Carbon source short fatty acids, TCA-cycle intermediates and carbohydrates IDA

MIGS-6 Habitat Soil and Host-associated IDA

MIGS-6.3 Salinity Not reported

MIGS-22 Oxygen requirement Aerobic NAS

MIGS-15 Biotic relationship Free-living and Host plant-associated NAS

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Soil beneath Ceanothus jepsonii, USA IDA

MIGS-5 Sample collection 1982 IDA

MIGS-4.1 Latitude Not reported -

MIGS-4.2 Longitude Not reported -

MIGS-4.4 Altitude Not reported -
a Evidence codes – IDA INFERRED FROM DIRECT ASSAY, TAS traceable author statement (i.e., a direct report exists in the literature) NAS non-traceable author
statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence)
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coherence with its host range, strain NRRL B-16219 is
phylogenetically affiliated to cluster 3, known to effectively
nodulate members of Elaeagnaceae, Rhamnaceae and
Myricaceae families. Phylogenetic analysis based on 16S
rRNA gene sequence showed that strain NRRL B-16219
was most closely related to type strains of “F. discariae”
DSM 46785T (99.78%) and F. elaeagni (98.26%) (Fig. 1).
Frankia sp. strain NRRL B-16219 shows typical

Frankia morphological structures; branched hyphae, ves-
icles, the site of nitrogenase activity, and multilocular
sporangia containing non-motile spores (Fig. 2).

Extended feature descriptions
Strain NRRL B-16219 represents one of the rare Frankia
strains directly isolated from soil on plate medium with-
out passing through plant trapping assay. The strain was
isolated from the rhizosphere of Ceanothus jepsonii [37]
following a complex protocol of soil treatment with phe-
nol (0.7%), sample fractionation through ultracentrifuga-
tion in sucrose density gradient, and plating on solid
DPM without nitrogen source. Strain NRRL B-16219
developed unpigmented white colonies after 4 weeks
growth on DPM medium at 28 °C without shaking. The
strain was phenotyped using GENIII microplates in an
Omnilog device (BIOLOG Inc., Haywood, USA) as pre-
viously described [5]. It was able to metabolize acetic
acid, citric acid, D-cellobiose, dextrin, D-fructose, D-
mannitol, D-mannose, fructose-6-phosphate, fusidic
acid, glucose-6-phosphate, D and L malic acid, p-hy-
droxy-phenylacetic acid, propionic acid and D-serine
and to grow in presence of 1% sodium lactate and up to
1% NaCl. Growth occurred between pH 5.0–6.8. The
strain showed tolerant only to rifamycin.

Genome sequencing information
Genome project history
Because it is one of the rare strains isolated directly from
the soil, NRRL B-16219 strain was selected as part of an
effort to gain insight into the depth of the pangenome
pool and to identify symbiotic signaling molecules. The
sequencing project was completed in April 2016 and the
generated data was submitted as draft genome to
Genbank under BioProject PRJNA318440 and the
accession number MAXA00000000.1.

Growth conditions and genomic DNA preparation
The studied strain was kindly provided by David Labeda,
ARS USDA bacterial collection, as NRRL B-16219 strain ID.
The strain was grown at 28 °C in stationary culture in 1-l
bottles containing DPM medium [5], supplemented with
0.5 mM NH4Cl as nitrogen source maintained. Biomass
from 1 month-old culture was harvested by centrifugation at
9000 x g for 15 min, rinsed several times with sterile distilled
water. The mycelial mats were broken by repeated passages
through syringes with progressively smaller diameters (21 g
to 27 g). Genomic DNA extraction was performed using
Plant DNeasy kits (Qiagen, Hilden, Germany) following the
recommendation of the manufacturer. Prior to genome se-
quencing, the quality of the isolated DNA was checked by
using the prepared DNA as template for PCR and partial se-
quences of several housekeeping genes and the 16S rRNA
gene were generated and analyzed [16].

Genome sequencing and assembly
Sequencing of the draft genome of Frankia sp. NRRL B-
16219 was performed at the Hubbard Center for
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Frankia sp. NRRL B-16219

Frankia asymbiotica DSM 100626T (KY744730)
Frankia inefficax DSM 45817T (KX695197)
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Frankia discarae DSM 46785T (KX825919)
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Frankia alni DSM 45986T (KX674376)
Frankia casuarinae DSM 45818T (KX674375)

Frankia coriariae DSM 100624T (KY066449)
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Jatrophihabitans endophyticus DSM 45627T (JQ346802)
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87/96 Modestobacter multiseptatus DSM 44406T (Y18646)
Blastococcus aggregatus DSM 4725T (L40614)

Geodermatophilus obscurus DSM 43160T (CP001867)
Nakamurella multipartita DSM 44233T (CP00173)

Cryptosporangium arvum DSM 44712T (D85465)
Fodinicola feengrottensis DSM 19247T (EF490376) 

Sporichthya polymorpha DSM 43042T (AB025317)

0.01 

Fig. 1 Maximum likelihood (ML) phylogenetic tree based on the 16S rRNA gene sequences (1400 nt), showing the relationships between Frankia
NRRL B-16219 and Frankia species. The ML tree was inferred using the GTR + GAMMA model and rooted by midpoint-rooting; the branches are
scaled in terms of the expected number of substitutions per site. The numbers above the branches are support values when larger than 60% from
ML (left) and MP (right) bootstrapping
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Genome Studies (University of New Hampshire, Dur-
ham, NH) using Illumina technology [38]. A standard
Illumina shotgun library was constructed and sequenced
using the Illumina HiSeq2500 platform with pair-end
reads of 2 × 250 bp. The Illumina sequence data were
trimmed by Trimmonatic version 0.32 [39], and assem-
bled using Spades version 3.5 [40], and ALLPaths-LG
version r52488 [41].

Genome annotation
The genome was annotated via the NCBI Prokaryotic
Genome Annotation Pipeline. Additionally nod gene
prediction analysis was done within the Integrated
Microbial Genomes-Expert Review system developed by
the Joint Genome Institute, Walnut Creek, CA, USA
[42] developed by the Joint Genome Institute, Walnut

Creek, CA, USA, using similarity search tools. This
whole-genome shotgun sequence has been deposited at
DDBJ/EMBL/GenBank under the accession number
MAXA00000000.1. The version described in this paper
is the first version, MAXA00000000.1. A summary of
the project information is shown in Table 2.

Genome properties
The draft genome of Frankia NRRL B-16219 con-
sisted of 289 DNA contigs that correspond to esti-
mated genome size of 8,032,739 bp and a GC content
of 71.7%. The draft genome contained 6859 total
genes, including 6211 protein-encoding genes
(90.55%), 561 pseudo genes (8.17%) and 53 RNAs
(0.76%) (Table 3). Classification of genes into the
COG functional categories is shown in Table 4.

Insights from the genome sequence
Comparison of genomes from Frankia sp. NRRL B-16219
and other Frankia species
The Frankia sp. NRRL B-16219 genome was compared
to all of the Frankia genomes available at NCBI genome
database including seven Frankia species including F.
alni, F. casuarinae, F. elaeagni, F. coriariae, “F. discar-
iae”, F. inefficax, and “F. asymbiotica”, two Candidatus
Frankia and other Frankia sp. strains. As shown for
other closely related strains from cluster 3, strain NRRL
B-16219 has one of the largest genome sizes
(8,032,739 bp) with a high GC content of 71.72%. Genes
shown or suggested to be involved in the actinorhizal
symbiosis were detected. Nitrogenase genes were orga-
nized into one operon: nifH-D-K-E-N-X-orf1-orf2-W-Z-
B-U and a non-linked nifV gene. Genes encoding the
hydrogenase subunits were clustered into two operons.

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Draft genome

MIGS-28 Libraries used Illumina Standard library

MIGS 29 Sequencing platforms Illumina HiSeq2500 platform

MIGS 31.2 Fold coverage 120.5×

MIGS 30 Assemblers Spades version 3.5, ALLPaths-LG version r52488

MIGS 32 Gene calling method GeneMarkS+ v3.3

Locus Tag BBK14_RS02460

Genbank ID MAXA00000000.1

Genbank Date of Release October 30, 2016

GOLD ID Gp0153653

BIOPROJECT PRJNA224116

MIGS 13 Source Material Identifier NRRL B-16219

Project relevance Agricultural

Fig. 2 Scanning electron micrograph of strain NRRL B-16219 after
growth for 4 weeks in liquid DPM medium at 28 °C showing hyphae
(h), vesicles (v) and sporangia (s)
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Genes for two different types of truncated hemoglobins,
HbN and HbO, were also present.

Nodulation pathway
In rhizobia, the common canonical nodABC genes
playing a key role in triggering root nodule formation
in Legumes. These signals are secreted as a reply to
host-plant flavonoids perceived by the compatible
rhizobial strains [43]. The Nod factors perceived by
host plant through the LysM-RLKs, and the resulting
signal transduction cascade triggers a bacterial
invasion of root cortical cells and the genesis of
functional nodules. Despite the presence of these
LysM-RLKs in the actinorhizal plants [11], none of
the Frankia genomes from cultivated strains
contained any homologous nod genes [33], but they
are present in the two Candidatus Frankia genomes
[32, 36]. Six nod-like genes were detected in the
NRRL B-16219 draft genome (Additional file 1: Table
S1) organized into two regions (Fig. 3). The first
cluster contained genes encoding the nodA1, nodC,
ABC-2 type transport system ATP-binding protein
(nodJ), ABC-2 transporter efflux protein, DrrB family

Table 3 Genome statistics

Attribute Value % of Totala

Genome size (bp) 8,032,739 100.0

DNA coding (bp) 6,603,166 82.20

DNA G + C (bp) 5,760,840 71.72

DNA Contigs289100 .0

Total genes 6859 100.0

Protein coding genes 6, 211 91.01

RNA genes 53 0.77

Pseudo genesb 561 8.18

Genes in internal clusters - -

Genes with function prediction 5046 73.60

Genes assigned to COGs 3609 52.64

Genes with Pfam domains 4735 69.06

Genes with signal peptides 176 2.57

Genes with transmembrane helices 296 4.32

CRISPR repeats 2 -
aThe total is based on either the size of the genome in base pairs or the total
genes in the annotated genome
bPseudo genes may also be counted as protein coding or RNA genes, so is not
additive under total gene count

Table 4 Number of genes associated with the general COG functional categories

Code Value % agea Description

J 178 4.27 Translation, ribosomal structure and biogenesis

A 1 0.02 RNA processing and modification

K 408 9.79 Transcription

L 109 2.62 Replication, recombination and repair

B 1 0.02 Chromatin structure and dynamics

D 32 0.77 Cell cycle control, cell division, chromosome partitioning

V 135 3.24 Defense mechanisms

T 249 5.98 Signal transduction mechanisms

M 173 4.15 Cell wall/membrane biogenesis

N 21 0.5 Cell motility

U 30 0.72 Intracellular trafficking, secretion, and vesicular transport

O 140 3.36 Posttranslational modification, protein turnover, chaperones

C 250 6 Energy production and conversion

G 207 4.97 Carbohydrate transport and metabolism

E 297 7.13 Amino acid transport and metabolism

F 94 2.26 Nucleotide transport and metabolism

H 262 6.29 Coenzyme transport and metabolism

I 351 8.42 Lipid transport and metabolism

P 210 5.04 Inorganic ion transport and metabolism

Q 256 6.14 Secondary metabolites biosynthesis, transport and catabolism

R 508 12.19 General function prediction only

S 178 4.27 Function unknown

- 3247 47.36 Not in COGs
aThe total is based on the total number of protein-coding genes in the genome
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(nodI) and nodH. The second cluster contained
nodA, nodB and a nodH genes. Amino acid sequence
similarities between Frankia sp. strain NRRL B-16219
NodA, B, C, and H predicted proteins ranged from
86 to 93% and 57–67% with the uncultured Frankia
(Dg1 and Dg2) and (α- and β-) rhizobia, respectively
(Additional file 2: Table S2). Further phylogenetic
analysis (Fig. 4) showed that the Frankia Nod pro-
teins were positioned at the root of both the α- and
β-rhizobial NodABC proteins as previously reported
[4, 8]. They were most closely related to plant
nodulating Betaproteobacteria of Burkholderia and
Paraburkholderia genera. The GC content of Frankia
nod genes ranged from 57.9% for nodA to 66.37% for
nodB which is quite similar to that of some rhizobial
species including Methylobacterium and Burkoldaria.
For both Frankia and rhizobia, GC% of the nod genes
was lower than that of total genome sequences.

Field collected microsymbionts of Ceanothus americanus
contain nod genes
Root nodules from Alnus glutinosa, Casuarina glauca
and Elaeagnus angustifolia growing in Tunisia and
Ceanothus americanus and Elaeagnus umbellata grow-
ing in Durham New Hampshire, USA, were collected.
The nodA-nodB region from C. americanus nodules
was PCR-amplified and sequenced. Following the
alignments of the nodA and nodB gene sequences of

Dg1 and NRRL B-16219, the primer set (forward
primer nodAF 5′-AGCGCGACCCGAGCTCAGGATA
ATCG-3′ and reverse nodBF (5′-CGATCCCACCCGG
ATGGAGCTGC-3′) was designed in this study. The
sequenced PCR-products were translated into amino
acid sequences to permit the detection of the 23 aa se-
quence at the beginning of the 193 aa of the NodA, the
intergenic region (160 nucleotides) and 41 aa at the end
of the 230aa of the NodB. Both sequences showed
100% sequence similarities to their respective homolo-
gous region in NodA (23/193aa) and NodB (41/230aa)
protein sequences for Candidatus Frankia Dg1.
Regardless of their affiliation to cluster 2 or to cluster 3
(Fig. 5), all of the analyzed C. americanus microsym-
bionts contained the nodAB genes. In contrast, A. gluti-
nosa, C. glauca, E. umbellata and E. angustifolia
microsymbionts failed to amplify the expected PCR
product. This result is in congruence with previous
reports claiming that no homologous nod genes are re-
trievable in sequenced genomes from strains isolated
from these actinorhizal plant species [33].

Conclusions
We report here the genome sequence of a Frankia strain
directly isolated from soil rhizosphere. The generated draft
genome was assembled into 289 contigs corresponding to
8,032,739 bp, which falls within the size range of Frankia
cluster 3 [33]. Bacterial factors triggering actinorhizal

Fig. 3 Organization of nod genes in Frankia NRRL B-16219 and Candidatus Frankia datiscae Dg1 genomes. Sizes, localization and orientation of
the genes are displayed proportionally. These genes are not detectable in any other Frankia genome except Candidatus Frankia Dg2
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Fig. 5 Neighbor-Joining phylogenetic tree based on glnA gene sequences. Bootstrap and probability values larger than 50% are only shown.
Marked in bold are Frankia strains or microsymbionts with nod genes as present in their genomes or detected by PCR-sequencing analysis
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symbiosis remain enigmatic since many sequenced Fran-
kia genomes have revealed the absence of universal nod-
factors. It was hypothesized that most Frankia strains use
a novel nod-independent pathway for the infection
process of actinorhizal plants. In contrast, two Candidatus
Frankia Dg1 and Dg2 genomes contain canonical nod
genes [32, 36]. Here we provide the first proof for the
presence of nod genes in the genome of a cultivated
Frankia strain. In addition, a PCR-sequencing approach
suggested that nod genes are only widespread in C. ameri-
canus microsymbionts. This situation is similar to legume
symbionts where two nodulation pathways are described:
the well-studied nod-dependent and an alternative nod-
independent pathway. The majority of rhizobia use the
nod-dependent pathway, while some photosynthetic [34]
and non-photosynthetic [35] bradyrhizobia use the
alternative nod-independent pathway. Moreover, some
rhizobia use both pathways and the use of the nod-
independent pathway seems to be highly dependent on
host species rather than the presence or absence of nod
genes in a given bradyrhizobial genome [44]. For Frankia,
almost all host plants are infected through the nod-
independent pathway, while the nod-dependent process
may only be present in unstudied actinorhizal species such
as members of the genus Ceanothus.
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Additional file 1: Table S1. Localizations and DNA coordinates for nod
genes in NRRL B16219 and Dg1 genomes. (DOCX 12 kb)

Additional file 2: Table S2. Percent similarities based on amino acid
sequence for NodA, B, C and H between Frankia sp. NRRL B-16219,
Candidatus Frankia Dg1 and Dg2, and other rhizobial strains.
(XLSX 308 kb)
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