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Abstract 42 

A polyphasic study was undertaken to establish the taxonomic provenance of a rapidly growing 43 

Mycolicibacterium strain CECT 8783T, recovered from the plant Stellera chamaejasme L. in 44 

Yunnan Province, China. Phylogenetic analyses based upon 16S rRNA and whole-genome 45 

sequences showed that the strain formed a distinct branch  within the evolutionary radiation of 46 

the genus Mycolicibacterium. The strain was most closely related to Mycolicibacterium 47 

moriokaense DSM 44221T with 98.4% 16S rRNA gene sequence similarity, but was 48 

distinguished readily from this taxon by a combination of chemotaxonomic and phenotypic 49 

features and by low average nucleotide identity and digital DNA:DNA hybridization values of 50 

79.5% and 21.1%, respectively. Consequently, the strain is considered, to represent a novel 51 

species of Mycolicibacterium for which the name Mycolicibacterium stellerae sp. nov is 52 

proposed; the type strain is I10A-01893T (= CECT 8783T = KCTC 19843T   = DSM 45590T). 53 

 54 

Mycobacterium [1], the type genus of the family Mycobacteriaceae [2], can be distinguished 55 

from other genera classified in the order Corynebacteriales by using a combination of  56 

genotypic and phenotypic criteria [3]. The genus includes pathogenic and non-tuberculous 57 

mycobacteria that are common in the environment and can cause opportunistic infections in 58 

immunocompetent and immunosuppressed patients [4]. Mycobacteria can be divided into two 59 

groups based on their growth rates on solid media; slowly growing strains need seven or more 60 

days of incubation at optimal temperatures to form visible colonies from highly diluted inocula 61 

whereas colonies of rapidly growing strains are seen within seven days under comparable 62 

conditions [5]. Species can be assigned to these two groups using polyphasic procedures, as 63 

exemplified by the circumscription of strains previously lumped together within the 64 

Mycobacterium abscessus and Mycobacterium avium complexes [6, 7]. However, genomic 65 

based methods provide much better resolution between mycobacterial species compared to 16S 66 

rRNA generated phylogenies and also provide insights into their evolution [8-10]. The 67 

availability of whole genome sequences and associated bioinformatic tools has led to the 68 

unambigious delineation of new mycobacterial species [11] and the recognition of heterotypic 69 

synonyms of Mycobacterium tuberculosis [10].  70 

The genus Mycobacterium encompasses nearly 200 validly named species [12] representatives 71 

of which formed a monophyletic taxon in a genome-based classification of the phylum 72 

Actinobacteria [11]. Most of these species have been classified into five distinct monophyletic 73 

groups based on extensive phylogenomic and comparative genome analyses [13]. Gupta and 74 

his colleagues [13] recognised an emended genus Mycobacterium, which included all of the 75 

https://www.thefreedictionary.com/circumscription
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major known pathogens as “Tuberculosis-Simiae” clade, and the novel genera Mycolicibacillus, 76 

Mycolicibacter,  Mycolicibacterium and Mycobacteroides which contain species assigned to 77 

clades designated as “Terrae”, “Triviale”, “Fortuitum-Vaccae”, and “Abscessus-Chelonae”, 78 

respectively [13]. The genus Mycolicibacterium encompasses 88 rapidly growing species, 79 

including Mycolicibacterium fortuitum the type species; members of this taxon have genomes 80 

that range in size from 3.95 – 8.0 Mbp and in G+C content 65.4 - 70.3 mol% [13].  81 

In a continuation of our studies on mycobacterial diversity, strain CECT 8783T recovered from 82 

Stellera chamaejasme L. in Yunnan Province, China was the subject of a polyphasic study. The 83 

resultant datasets show that the strain represents a novel Mycolicibacterium species for which 84 

the name Mycolicibacterium stellerae sp. nov. is proposed. 85 
  86 
A culture of CECT 8783T representing strain I10A-01893T was obtained from the Spanish Type 87 

Culture Collection (CECT), but was originally deposited in the German Collection of 88 

Microorganisms and Cell Cultures (DSMZ) and given the accession number DSM 45590T. The 89 

strain was maintained together with its closest phylogenetic neighbour, Mycolicibacterium 90 

moriokaense CIP105393T [13, 14], on proteose peptone-meat extract-glycerol agar (PMG; 91 

DSMZ 250 medium) and as suspensions of cells in 35%, v/v glycerol at -80°C.  92 

Cultural and morphological features of CECT 8783T were carried out under light and dark 93 

conditions on glucose-yeast extract-malt extract agar (GYM; DSMZ medium 65), Löwenstein-94 

Jensen medium (LJ; [15]), Middlebrook 7H10 agar (MB7H10; [16]), nutrient agar (NA; [17]) 95 

and peptone-meat extract-glucose agar (PMG; DSMZ medium 250) and tryptic soy agar (TSA; 96 

[18]) after incubation for 14 days at 37°C. In addition the strain was examined for its ability to 97 

grow at 4°C, 10°C, 15°C, 25°C, 28°C, 37°C and 45°C as well as for its ability to grow 98 

anaerobically on PMG agar, using an anaerobic bag system (Sigma-Aldrich 68061). Strain 99 

CECT 8783T was examined for acid-alcohol-fastness [19]. The strain was acid-alcohol-fast, 100 

grew optimally on GYM, NA, PMG and TSA agar after 5 days at 37°C, but not under anaerobic 101 

conditions. Yellow pigmented colonies were produced on all of these media under both light 102 

and dark conditions. 103 

Genomic DNA was extracted from a culture of CECT 8783T after Amaro et al. [20]. The 104 

genome of the strain was sequenced using an Illumina MiSeq instrument as described by Sangal 105 

et al. [21] and assembled into contigs using SPAdes 3.9.0 with a kmer length of 127 [22]. A 106 

complete 16S rRNA gene sequence was extracted from the draft genome (accession number 107 

MH935827). Corresponding 16S rRNA gene sequences of the type strains of closely related 108 

Mycolicibacterium species were retrieved from the EzBioCloud server [23]. Maximum-109 
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likelihood (ML) and maximum-parsimony (MP) phylogenetic trees derived from the 16S rRNA  110 

were inferred using the genome-to-genome distance calculator (GGDC) web server [24]  111 

adapted to single gene inferences; the latter was also used to calculate pairwise sequence 112 

similarities [25, 26]. Multiple sequence alignments were generated using  MUSCLE software 113 

[27] and a ML tree inferred from the alignment with RAxML [28] using rapid bootstrapping 114 

and the auto MRE criterion [29]. In turn, an MP tree was inferred from alignements with the 115 

Tree analysis New Technology (TNT) program [30] using 1000 bootstraps together with tree 116 

bisection and reconnection branch swapping and ten random sequence replicates. The X2 test 117 

implemented in PAUP* [31] was used to check for compositional bias in the sequences.  118 

Blast analysis of the complete 16S rRNA gene sequence of strain CECT 8783T  (1533 119 

nucleotides) showed that it was most closely related to M. moriokaense CIP105393T and 120 

Mycolicibacterium goodii ATCC 700504T [13, 32], showing 16S rRNA gene sequence 121 

similarities with them of 98.4% and 98.6%, respectively; the corresponding pairwise 16S rRNA 122 

gene sequence similarities based on the GGDC platform were 98.3% and 98.4%. The strain 123 

formed a distinct branch in the 16S rRNA gene tree (Fig. 1), between Mycolicibacterium 124 

madagascarense ATCC 49865T branch [13, 33] and a poorly supported subclade that contained 125 

Mycolicibacterium celeriflavum AFPC-000207T [13, 34], M. moriokaense CIP105393T, 126 

Mycolicibacterium phlei DSM 43239T [13, 35], Mycolicibacterium pulveris DSM 44222T  [13, 127 

36]; strain CECT 8783T shared 16S rRNA gene sequence similarities with these organismes 128 

within the range 97.8%-98.4%. An adjacent well supported clade contained M. goodii ATCC 129 

700504T and Mycolicibacterium smegmatis NCTC 8159T [13, 35, 37]. 130 

Due to poor bootstrap support for several nodes in the 16S rRNA gene tree, ML trees were 131 

constructed from core proteins and 400 universal protein sequences using PhyloPhlAn [38]. In 132 

brief, genome sequences were annotated using Prokka 1.11 [39] and the protein sequences were 133 

compared using BPGA 1.3 pipeline [40] to calculate the core genome. Poorly aligned regions 134 

and sites with the missing data was removed from the sequence alignment of the core proteins 135 

using Gblocks [41]. A ML phylogenetic tree was generated from the resulting alignment of 136 

23,359 amino acids using IQ-Tree [42] with LG+F+I+G4 substitution model and 100,000 137 

ultrafast bootstrap iterations and SH-like approximate likelihood ratio tests. Another ML tree 138 

was generated from the protein sequences using PhyloPhlAn which extracts subset of amino 139 

acids from 400 universal sequences and calculates ML phylogeny [38]. 140 
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It can be seen from Figure 2 that strain CECT 8783T formed a well supported branch in the 141 

phylogenomic tree together with, M. celeriflavum DSM 46765T, Mycolicibacterium flavescens 142 

M6T [13, 43], M. moriokaense CIP 105393T and M. phlei CCUG21000T that was clearly 143 

separated from a corresponding clade contained M. goodii X7BT and M. smegmatis 144 

NCTC8159T (Fig 2a). The same topology was observed on the concatenated 400 universal 145 

amino acid sequences based tree (Fig. 2b). 146 

The genome size of the strain was found to be  ~6.9 Mb with 37.7X coverage, 88 contigs, 52 147 

RNAs and 6836 coding sequences and an in silico G+C content of 65.8 mol%. Similarly, the 148 

type strain of M. moriokaense has a genome size of 6.2 Mb, 51 RNAs, 6114 coding sequences 149 

and an in silico G+C content of 66.0 mol%. The average nucleotide identity (ANI), estimated 150 

using blastANI algorithm [44], between the genomes of the two strains was 79.5%, a value well 151 

below the threshold of 95-96% used to delineate prokaryotic species [44-46]. Similarly, the 152 

digital DNA:DNA hybridization (dDDH) value between the two strains, calculated using 153 

GGDC based on formula 2 of Meier-Kolthoff et al. [25] (http://ggdc.dsmz.de/), was 21.1% 154 

[18.9 - 23.5%], this is well below the 70% cut-off recommended for assigning strains to the 155 

same species [47]. Using Artemis software [48], the molecular signatures specific to the genus 156 

Mycolicibacterium (LacI family transcriptional regulator (WP_036341761); CDP-x 157 

(WP_036344961); and CDP-diacylglycerol–serine (WP_066811333)),  identified by Gupta et 158 

al. [13],  were found in the genome of the strain CECT 8783T. 159 

Biomass for most of the chemotaxonomic analyses on strain CECT 8783T was prepared in 160 

shake flasks (200 resolutions per minute) of  PMG broth following incubation at 37°C for 5 161 

days. Cells were washed three time in sodium chloride solution (0.9%, w/v), freeze dried and 162 

stored at room temperature. Standard chromatographic procedures were used to detect  isomers 163 

of diaminopimelic acid (A2pm) [49];  mycolic acids [50], polar lipids [51] and cell wall sugars 164 

[52]. Strain CECT 8783T and M. moriokaense DSM 44221T produced whole organism 165 

hydrolysates rich in meso-A2pm, arabinose, galactose, glucose, mannose and ribose and had 166 

polar lipid profiles  containing diphosphatidylglycerol (DPG), glycophospholipid (GPL), 167 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), unidentified glycolipids (GL), 168 

unidentified lipids and phospholipid. In addition strain CECT 8783T contained an 169 

aminoglycolipid and M. moriokaense DSM 44221T an aminolipid (Fig. S1). 170 

Wet biomass for the fatty acid was prepared in Middelbrook 7H10 broth following incubation 171 

for 5 days at 37°C. Cellular fatty acids were extracted and fatty acids methyl esters (FAMES) 172 

prepared after saponification and methylation using the procedure introduced by Miller 173 

http://ggdc.dsmz.de/
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[53] .The FAMES were analysed by gas chromatography (Agilent 6890N) instrument   and 174 

identified based on myco6 database [54] and the standard Microbial Identification (MIDI) 175 

system, version 4.5. 176 

Quantitative differences in the mixtures of saturated, unsaturated and 10-methyloctadecanoic 177 

(tubercolostearic) fatty acids were found between the two strains (Table S1). The major fatty 178 

acid of strain CECT 8783T (>25%) were C18:1 ω9c and C16:0 and that of M. moriokaense DSM 179 

44221T  was C16:0 though the latter unlike the former, contained C17:1 ω 7c (Table S1). The 180 

mycolic acid profile of the strain CECT 8783T consisted of  α, α’-mycolates, keto-mycolates, 181 

ω-carboxymycolate while M. moriokanese DSM 44221T lacked  α’-mycolates (Fig. S2). 182 

The two strains were examined, in duplicate, for a broad range of standard biochemical tests, 183 

namely: arylsulfatase after 3 and 20 days [55], reduction of potassium tellurite [56, 57], 184 

degradation of Tween 80 [58] and urea hydrolysis [59]. In addition, the strains were examined 185 

for their ability to metabolise a broad range of sole carbon and nitrogen sources, to grow on the 186 

presence of several concentrations of sodium chloride, at a range of pH values and in the 187 

presence of inhibitory compounds, using GENIII microplates  and an Omnilog device (Biolog 188 

Inc., Hayward, USA). These tests were carried out in duplicate using freshly prepared inocula 189 

harvested from the mid-logarithmic growth phase of PMG agar plates incubated at 37̊C for 7 190 

days, as described by Nouioui et al. [60]. Opm package version 1.3.36 [61-62] was used to 191 

analyse the resultant data. Identical results were obtained for all of the duplicated tests.  192 

Phenotypic features summarised in Table 1 clearly distinguish strain CECT 8783T from M. 193 

moriokaense DSM 44221T. Both strains found to be able to reduce potassium tellurite, but were 194 

unable to degrade Tween 80 or hydrolyse urea. However, only strain DSM 44221T  produced 195 

arylsulfatase after 3 and 14 days. 196 

It can be concluded from the chemotaxonomic, genomic and phenotypic data that strain CECT 197 

8783T clearly forms a new centre of taxonomic variation within the genus Mycolicibacterium. 198 

Consequently, it is proposed that the strain be recognised to represent a new species, namely as 199 

Mycolicibacterium stellerae sp. nov.  200 

 201 

Description of Mycolicibacterium stellerae sp. nov. 202 

Mycolicibacterium stellerae (stel’le.rae N.L. gen. n. stellerae of Stellera, named referring to 203 

the host plant, Stellera chamaejasme,  from which the strain was isolated). 204 
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Strictly aerobic Gram-stain positive, acid-alcohol fast, fast growing organism which produces 205 

orange coloured colonies on Middelbrook 7H10, nutrient agar, proteose peptone-meat extract-206 

glycerol, glucose-yeast extract-malt extract and tryptic soy agar plates within 5 days at 37°C 207 

under dark and light conditions. Grows between 25°C and 37°C, optimally ~ 37°C, and at pH7. 208 

Arylsulfatase negative after 3 and 14 days at 37̊C. Strain CECT 8783T  reduced potassium 209 

tellurite, but was unable to degrade Tween 80 or hydrolyse urea. It was able to utilise L-210 

arginine, L-aspartic acid and D-serine (amino acids); L-glutamic acid,   L-lactic acid,  D-malic 211 

acid,  α-hydroxy-butyric acid,  p-hydroxy-phenylacetic acid and L-pyroglutamic acid (organic 212 

acids); D-cellobiose, dextrin,  glycerol, D-maltose,  methyl pyruvate,  sucrose, D-trehalose and 213 

turanose (sugars) and degraded pectin. Whole cell hydrolysates contained meso-214 

diaminopimelic acid and arabinose, galactose, glucose, mannose and ribose; the polar lipid 215 

consists of diphosphatidylglycerol, a glycophospholipid, phosphatidyethanolamine, 216 

phosphatidylinositol, an aminoglycolipid, a phospholipid, three unidentified glycolipids and 217 

two unidentified lipids. The major fatty acids are C18:1 ω9c and C16:0 with α, α’-mycolates, keto-218 

mycolates, ω-carboxymycolate as mycolic acids. The  genome size is 6.9 Mb with  an in silico 219 

DNA G+C content of 65.8%.  220 

The type strain I10A-01893T (= CECT 8783T = KCTC 19843T =DSM 45590T) was isolated 221 

from Stellera chamaejasme in Yunnan Province,  China 222 

 223 
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Table 1. Phenotypic features that distinguish strain CECT 8783T from M. moriokaense DSM 383 
44221T  384 

      + Positive reaction; - negative reaction.385 

 CECT 8783T M. moriokaense DSM 44221T 
Utilisation of amino acids   
L-Arginine, D-serine #2 + - 
L-histidine, L-serine - + 
Utilisation of organic acids   
D-Gluconic acid, glucuronamide - + 
L-aspartic acid, L-glutamic acid,   L-lactic 
acid,  D-malic acid,  α-hydroxy-butyric 
acid,  p-hydroxy-phenylacetic acid, L-
pyroglutamic acid 

+ - 

Utilisation of sugars :   
D-Cellobiose, dextrin,  glycerol, D-
maltose,  methyl pyruvate,  sucrose,  D-
trehalose turanose 

+ - 

D-arabitol,   fructose, D-mannitol, D-
sorbitol  

- + 

Resistance to 
Fusidic acid,  lincomycin,  minocycline,  
rifamycin sv, 1%   sodium lactate, 
tetrazolium  blue, tetrazolium violet, 
vancomycin 

- + 

Degradation tests 
Tween 40 - + 
Pectin + - 
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All of the strains metabolised acetic acid, acetoacetic acid, bromo-succinic acid, butyric acid, 386 

β-hydroxy-butyric acid, L-malic acid andpropionic acid (organic acids), glycine-proline (amino 387 

acid); gelatin; grew in presence of aztreonam and nalidixic acid (antibiotics) and lithium acid, 388 

potassium tellurite, sodium bromate and sodium formate (salts). In contrast, none of  the strains 389 

oxidised alanine, D-aspartic acid, γ -amino-n butyric acid, n-acetyl-D-galactosamine, n-acetyl-390 

D-glucosamine, n-acetyl-β-d-mannosamine, n-acetyl-neuraminic acid, citric acid, D-fructose-391 

6-phosphate, D-fucose, L-galactonic acid-γ-lactone, D-galacturonic acid, D-glucose-6-392 

phosphtae D-glucuronic acid, guanidine hydrochloride, α-keto-butyric acid, α-keto-glutaric 393 

acid, mucic acid, D-galactose, β-gentiobiose, inosine, D-lactic acid, α-D-lactose, D-lactic acid 394 

methyl ester, mannose, 3-o-methyl-D-glucose, β-methyl-D-glucoside, myo-inositol, melibiose, 395 

niaproof, quinic acid, D- raffinose, L-rhamnose, D-saccharic acid, D-salicin, D-serine, 396 

stachyose and troleandomycin. 397 

 398 

Figures 399 

 400 

 401 

Fig. 1. Maximum-likelihood phylogenetic tree based on almost complete16S rRNA gene 402 

sequences inferred using the GTR+GAMMA model showing relationships between strain 403 

CECT 8783T and its closest phylogenetic neighbours. The numbers above the branches are 404 

bootstrap support values greater than 60% for ML (left) and MP (right). The scale bar is 0.007. 405 

 406 

 407 
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 408 
 409 

Fig. 2. Maximum-likelihood phylogenomic trees based on core genome sequences (a) and on 410 

concatenated amino acid sequences from 400 universal proteins (b) showing relationships 411 

between strain CECT 8783T and its nearest neighbours. 412 

 413 

 


