11 research outputs found

    Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending

    Get PDF
    Optical fiber cables are materials whose core is made of silica and other materials such as chalcogenide glasses; they transmit a digital signal via light pulses through an extremely thin strand of glass. The light propagates and is being guided by the core which is surrounded by the cladding. Light travels in the optical fiber in the form of total internal reflection in the core of the fibers. The flexibility, low tensile strength, low signal loss, high bandwidth and other characteristics of optical fibers favors it for use as a delay medium in many applications. Another favorable characteristic of optical fiber delay lines is are their relative insensitivities to environmental effects and electromagnetic interferences. The immunity of optical fibers to interferences and their less weight added advantages to it for use as delay medium. Single-mode and multi-mode are the two most popular types of optical fibers. Single-mode fibers have good propagation and delay properties with a minimal loss that allows the signal to propagate in a large distance with insignificant distortion or attenuation. The percentage of power transmission of single-mode fibers is found to be higher than that of the multi-mode fibers. It is, therefore, a preferred type for use as a delay line. In this paper, relative studies of the two optical fibers modes, and the results of power input/output measurement of the two modes are presented with a view to coming up with a better type for use as a delay medium

    Plasma kinetic theory

    Get PDF
    The description of plasma using fluid model is mostly insufficient and requires the consideration of velocity distribution which leads to kinetic theory. Kinetic theory of plasma describes and predicts the condition of plasma from microscopic interactions and motions of its constituents. It provides an essential basis for an introductory course on plasma physics as well as for advanced kinetic theory. Plasma kinetics deals with the relationship between velocity and forces and the study of continua in velocity space. Plasma kinetics mathematical equations provide aid to the readers in understanding simple tools to determine the plasma dynamics and kinetics as described in this chapter. Kinetic theory provides the basics and essential introduction to plasma physics and subsequently advanced kinetic theory. Plasma waves, oscillations, frequencies, and applications are the subjects of kinetic theory. In this chapter, mathematical formulations essential for exploring plasma kinetics are compiled and described simplistically along with a precise discussion on basic plasma parameters in simple language with illustrations in some cases

    Impact of communication delay on distributed load frequency control (dis-LFC) in multi-area power system (MAPS)

    Get PDF
    In this paper, impact of communication delay on distributed load frequency control (dis-LFC) of multi-area interconnected power system (MAIPS) is investigated. Load frequency control (LFC), as one of ancillary services, is aimed at maintaining system frequency and inter-area tie-line power close to the scheduled values, by load reference set-point manipulation and consideration of the system constraints. Centralized LFC (cen-LFC) requires inherent communication bandwidth limitations, stability and computational complexity, as such, it is not a good technique for the control of large-scale and geographically wide power systems. To decrease the system dimensionality and increase performance efficiency, distributed and decentralized control techniques are adopted. In distributed LFC (dis-LFC) of MAIPS, each control area (CA) is equipped with a local controller and are made to exchange their control actions by communication with controllers in the neighboring areas. The delay in this communication can affect the performance of the LFC scheme and in a worst case deteriorates power system stability. To investigate the impact of this delay, model predictive controller (MPC) is employed in the presence of constraints and external disturbances to serve as LFC tracking control. The scheme discretizes the system and solves an on-line optimization at each time sample. The system is subjected to communication delay between the CAs, and the response to the step load perturbation with and without the delay. Time-based simulations were used on a three-area MAIPS in MATLAB/SIMULINK environment to verify the investigations. The overshoot and settling time in the results reveals deterioration of the control performance with delay. Also, the dis-LFC led to zero steady states errors for frequency deviations and enhanced the MAIPS’ performance. With this achievement, MPC proved its constraints handling capability, online rolling optimization and ability to predict future behavior of systems

    Ranking method for Z-numbers based on centroid-point

    Get PDF
    Zadeh introduced the concept of Z-number to provide a basis for computation with numbers that are not completely reliable, and it has the ability to portray fuzziness and reliability of information concurrently. Ranking of Z-numbers is an important aspect, especially in decision making Objective: Ranking method for Z-numbers. Method: By converting Z-number into fuzzy number, and then the centroid-point method and decision rules are used to rank the obtained fuzzy numbers. Results: A ranking method for Z-numbers is proposed, and a numerical example is provided to illustrate the feasibility and validity of the proposed method. Conclusions: However, converting Z-number into fuzzy number can lead to loss of original Z-information

    Photoelectrode nanostructure dye-sensitized solar cell

    Get PDF
    This study used carica papaya (pawpaw leaf) extracts as natural organic dye for dye sensitized solar cell (DSSC). Pawpaw leaf extract is rich in chlorophyll and was extracted using ethanol as the extracting solvent and serve as the sensitizer for DSSC. The specialty of the DSSC relative to other types of solar cells is the use of the dye. In addition, the self-developed photoelectrode nanostructure TiO2 with an average particle size of 50 nm was synthesized through solution chemistry techniques and deposited on the fluorine doped tin oxide (FTO) glass substrate using screen printing procedure, forming a TiO2 thin film of 12 μm thicknesses. This TiO2 thin film underwent sintering at 450 °C to enhance the compactness of the film before impregnation into the dye solutions. This study further investigated the photoelectric conversion efficiency and the fill factor of the encapsulated DSSC. The experimental results show conversion efficiency of 0.030 % with fill factor of 0.5867, short circuit current density (ISc) of 15.7325 mA/cm and open circuit voltage (Voc) of 0.5248 V. The photoelectrochemical performance of this extract demonstrated to be used as future alternative to application in solar cell.Keywords: Carica papaya; dye-sensitized solar cell; photoelectrode; conversion efficiency; fill facto

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Design and development of a microcontroller-based Single Input Multiple Outputs (SIMO) power system for off-grid photovoltaic applications

    Get PDF
    Cross-regulation problem and power dissipation due to multiple switching are mostly encountered among single-input multiple outputs (SIMO) converters. In present research, a SIMO flyback converter is designed and developed to evaluate the effect of switching frequency and overcome cross-regulation error. The developed converter system has four output levels of 24 V,12 V,9 V and 5 V and contains minimum number of components with low cost (USD20) and power dissipation (<2%). Ferrite-core transformer is used to generate four output voltage levels. All the four windings are wound around a common core and the developed system provides high efficiency and reduce dissipations. As voltage is applied at the primary coil, a magnetic field is generated around the core due to mutual inductance. The magnetic field strength induced into the core depends on the number of turns, current and voltage in the winding. The percentage error at the outputs of the SIMO converter is more on terminals with less number of windings; the higher the voltage the less the error. The average switching frequency f sw against k (a control parameter for switching frequency) is notably higher with lower k. However, for small k, (i.e. at high switching frequency), the voltage regulation is tighter and more accurate. Therefore, 0.1<k<0.2 has been set and the regulation error are limited to <1%. The switching and control techniques operate at an average switching frequency of 199 kHz with small frequency fluctuations and output voltage ripples around 10 mV (i.e <0.1% of V0) under nominal conditions of Vi=12 V. Efficiencies of 97%, 97.3%, 98.2% and 98.4% have been obtained across the four terminals for 24 V, 12 V, 9 V and 5 V respectively

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    International audienc
    corecore