81 research outputs found

    A relation between circumnuclear HI, dust, and optical cores in low-power radio galaxies

    Get PDF
    From new observations and literature data we investigate the presence of HI, dust, and optical cores in the central kiloparsec of low-power radio galaxies. The goal of this pilot study is to identify physical relations between these components, which can help us to study kinematics and feeding mechanisms in future samples of active galaxies. Our results are consistent with neutral gas being associated with dust on sub-kiloparsec scales. Objects that have HI absorption always have significant amounts of dust in their host galaxy. If there is no visible dust in the host galaxy, there is also no HI absorption. The presence of an unresolved optical core correlates with the HI column density, with the core being absent in high column density sources. This work opens a path for studying the kinematics of cold material in the central regions of active galaxies by combining information of HI absorption and molecular lines. Consistent with previous work, we find no evidence for a compact, parsec-scale obscuring torus in low-power radio galaxies.Comment: Accepted for publication in A&

    Nature of 60 micron emission in 3C47, 3C207 and 3C334

    Full text link
    We try to explain the unusually high far-infrared emission seen by IRAS in the double-lobed radio-loud quasars 3C47, 3C207 and 3C334. High resolution cm--mm observations were carried out to determine their radio core spectra, which are subsequently extrapolated to the far-infrared in order to determine the strength of the synchrotron far-infrared emission. The extrapolated flux densities being considerably lower than the observed values, a significant nonthermal far-infrared component is unlikely in the case of 3C47 and 3C334. However, this component could be responsible for the far-infrared brightness of 3C207. Our analysis demonstrates that nonthermal emission cannot readily account for the difference between quasars and radio galaxies in the amount of their far-infrared luminosity. On the other hand, a significant role for this mechanism is likely; full sampling of the mm-submm spectral energy distributions is needed to address the issue quantitatively.Comment: 7 pages, incl. 3 figures; accepted for publication in A&

    Mid-frequency aperture arrays: the future of radio astronomy

    Full text link
    Aperture array (AA) technology is at the forefront of new developments and discoveries in radio astronomy. Currently LOFAR is successfully demonstrating the capabilities of dense and sparse AA's at low frequencies. For the mid-frequencies, from 450 to 1450MHz, AA's still have to prove their scientific value with respect to the existing dish technology. Their large field-of-view and high flexibility puts them in an excellent position to do so. The Aperture Array Verification Program is dedicated to demonstrate the feasibility of AA's for science in general and SKA in particular. For the mid-frequency range this has lead to the development of EMBRACE, which has already demonstrated the enormous flexibility of AA systems by observing HI and a pulsar simultaneously. It also serves as a testbed to demonstrate the technological reliability and stability of AA's. The next step will put AA technology at a level where it can be used for cutting-edge science. In this paper we discuss the developments to move AA technology from an engineering activity to a fully science capable instrument. We present current results from EMBRACE, ongoing tests of the system, and plans for EMMA, the next step in mid-frequency AA technology.Comment: 8 pages, 7 figures, proceedings of Resolving The Sky - Radio Astronomy: Past, Present and Future (RTS2012), April 17-20, 2012, Manchester, U

    Polarization and kinematics in Cygnus A

    Full text link
    From optical spectropolarimetry of Cygnus A we conclude that the scattering medium in the ionization cones in Cygnus A is moving outward at a speed of 170+-34 km/s, and that the required momentum can be supplied by the radiation pressure of an average quasar. Such a process could produce a structure resembling the observed ionization cones, which are thought to result from shadowing by a circumnuclear dust torus. We detect a polarized red wing in the [O III] emission lines arising from the central kiloparsec of Cygnus A. This wing is consistent with line emission created close to the boundary of the broad-line region.Comment: 5 pages, accepted for publication in MNRAS letter

    A new period of activity in the core of NGC 660

    Get PDF
    The core of the nearby galaxy NGC 660 has recently undergone a spectacular radio outburst; using a combination of archival radio and Chandra X-ray data, together with new observations, the nature of this event is investigated. Radio observations made using e-MERLIN in mid-2013 show a new compact and extremely bright continuum source at the centre of the galaxy. High angular resolution observations carried out with the European VLBI Network show an obvious jet-like feature to the north east and evidence of a weak extension to the west, possibly a counter-jet. We also examine high angular resolution Hi spectra of these new sources, and the radio spectral energy distribution using the new wide-band capabilities of e-MERLIN. We compare the properties of the new object with possible explanations, concluding that we are seeing a period of new AGN activity in the core of this polar ring galaxy

    A compact core-jet structure in the changing-look Seyfert NGC 2617

    Get PDF
    The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous 'inside-out' multi-wavelength outburst in Spring 2013, and a dramatic Seyfert type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search for the jet activity associated with this variable accretion activity, we carried out multi-resolution and multi-wavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about two parsecs in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of about 1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the 'inside-out' outburst of 2013. Moreover, we report that most optically selected changing-look AGN at z<0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    MeqSilhouette v2: spectrally resolved polarimetric synthetic data generation for the event horizon telescope

    Get PDF
    We present MeqSilhouette v2.0 (MeqSv2), a fully polarimetric, time-and frequency-resolved synthetic data generation software for simulating millimetre (mm) wavelength very long baseline interferometry (VLBI) observations with heterogeneous arrays. Synthetic data are a critical component in understanding real observations, testing calibration and imaging algorithms, and predicting performance metrics of existing or proposed sites. MeqSv2 applies physics-based instrumental and atmospheric signal corruptions constrained by empirically derived site and station parameters to the data. The new version is capable of applying instrumental polarization effects and various other spectrally resolved effects using the Radio Interferometry Measurement Equation (RIME) formalism and produces synthetic data compatible with calibration pipelines designed to process real data. We demonstrate the various corruption capabilities of MeqSv2 using different arrays, with a focus on the effect of complex bandpass gains on closure quantities for the EHT at 230 GHz. We validate the frequency-dependent polarization leakage implementation by performing polarization self-calibration of synthetic EHT data using PolSolve. We also note the potential applications for cm-wavelength VLBI array analysis and design and future directions.http://mnras.oxfordjournals.orghj2022Physic
    • 

    corecore