29 research outputs found

    Iterative determination of clinical beam phase space from dose measurements

    Get PDF
    Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrain

    Optimization of Monte Carlo code for clinical simulation of electron beams

    Full text link
    The aim of this work is to optimize a Monte Carlo (MC) kernel for electron radiation therapy (IOERT) compatible with intraoperative usage and to integrate it within an existing IOERT dedicated treatment planning system (TPS

    Muscle Function Differences between Patients with Bulbar and Spinal Onset Amyotrophic Lateral Sclerosis. Does It Depend on Peripheral Glucose?

    Get PDF
    Background: One of the pathogenic mechanisms of ALS disease is perturbed energy metabolism particularly glucose metabolism. Given the substantial difference in the severity and the prognosis of the disease, depending on whether it has a bulbar or spinal onset, the aim of the study was to determine metabolic differences between both types of ALS, as well as the possible relationship with muscle function. Materials and Methods: A descriptive, analytical, quantitative, and transversal study was carried out in hospitals and Primary Care centers in the region of Valencia, Spain. Fasting glucose and alkaline phosphatase (AP) levels in venous blood, muscle percentage, fat percentage, muscle strength (MRC scale), and functional capacity (Barthel Index) were measured in 31 patients diagnosed with ALS (20 with spinal onset ALS and 11 with bulbar onset ALS). A healthy control of 29 people was included. Results: No significant differences were observed in blood AP and glucose levels between spinal onset and bulbar onset ALS patients. However, a significant positive correlation was observed between the mean values of both substances in patients with spinal onset ALS. Moreover, a lower percentage of muscle mass and a higher percentage of fat mass were also seen in spinal ALS patients, who also presented lower muscle strength and lower functional capacity. Conclusion: The results of this study seem to point to a possible difference in the peripheral use of glucose between patients with bulbar onset ALS and spinal onset ALS, who appear to have possible insulin resistance. These metabolic differences could explain the lower muscle percentage and lower muscular function in spinal onset ALS patients, although further studies are required

    Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy

    Get PDF
    This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation

    Vitruvius+: An area-efficient RISC-V decoupled vector coprocessor for high performance computing applications

    Get PDF
    The maturity level of RISC-V and the availability of domain-specific instruction set extensions, like vector processing, make RISC-V a good candidate for supporting the integration of specialized hardware in processor cores for the High Performance Computing (HPC) application domain. In this article,1 we present Vitruvius+, the vector processing acceleration engine that represents the core of vector instruction execution in the HPC challenge that comes within the EuroHPC initiative. It implements the RISC-V vector extension (RVV) 0.7.1 and can be easily connected to a scalar core using the Open Vector Interface standard. Vitruvius+ natively supports long vectors: 256 double precision floating-point elements in a single vector register. It is composed of a set of identical vector pipelines (lanes), each containing a slice of the Vector Register File and functional units (one integer, one floating point). The vector instruction execution scheme is hybrid in-order/out-of-order and is supported by register renaming and arithmetic/memory instruction decoupling. On a stand-alone synthesis, Vitruvius+ reaches a maximum frequency of 1.4 GHz in typical conditions (TT/0.80V/25°C) using GlobalFoundries 22FDX FD-SOI. The silicon implementation has a total area of 1.3 mm2 and maximum estimated power of ~920 mW for one instance of Vitruvius+ equipped with eight vector lanes.This research has received funding from the European High Performance Computing Joint Undertaking (JU) under Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific Grant Agreement No 101036168 (EPI SGA2). The JU receives support from the European Union’s Horizon 2020 research and innovation programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-SGA2 project, PCI2022-132935 is also co-funded by MCIN/AEI/10.13039/501100011033 and by the UE NextGen- erationEU/PRTR. This work has also been partially supported by the Spanish Ministry of Science and Innovation (PID2019-107255GB-C21/AEI/10.13039/501100011033).Peer ReviewedPostprint (author's final draft

    DVINO: A RISC-V vector processor implemented in 65nm technology

    Get PDF
    This paper describes the design, verification, implementation and fabrication of the Drac Vector IN-Order (DVINO) processor, a RISC-V vector processor capable of booting Linux jointly developed by BSC, CIC-IPN, IMB-CNM (CSIC), and UPC. The DVINO processor includes an internally developed two-lane vector processor unit as well as a Phase Locked Loop (PLL) and an Analog-to-Digital Converter (ADC). The paper summarizes the design from architectural as well as logic synthesis and physical design in CMOS 65nm technology.The DRAC project is co-financed by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of total eligible cost. The authors are part of RedRISCV which promotes activities around open hardware. The Lagarto Project is supported by the Research and Graduate Secretary (SIP) of the Instituto Politecnico Nacional (IPN) from Mexico, and by the CONACyT scholarship for Center for Research in Computing (CIC-IPN).Peer ReviewedArticle signat per 43 autors/es: Guillem Cabo∗, Gerard Candón∗, Xavier Carril∗, Max Doblas∗, Marc Domínguez∗, Alberto González∗, Cesar Hernández†, Víctor Jiménez∗, Vatistas Kostalampros∗, Rubén Langarita∗, Neiel Leyva†, Guillem López-Paradís∗, Jonnatan Mendoza∗, Francesco Minervini∗, Julian Pavón∗, Cristobal Ramírez∗, Narcís Rodas∗, Enrico Reggiani∗, Mario Rodríguez∗, Carlos Rojas∗, Abraham Ruiz∗, Víctor Soria∗, Alejandro Suanes‡, Iván Vargas∗, Roger Figueras∗, Pau Fontova∗, Joan Marimon∗, Víctor Montabes∗, Adrián Cristal∗, Carles Hernández∗, Ricardo Martínez‡, Miquel Moretó∗§, Francesc Moll∗§, Oscar Palomar∗§, Marco A. Ramírez†, Antonio Rubio§, Jordi Sacristán‡, Francesc Serra-Graells‡, Nehir Sonmez∗, Lluís Terés‡, Osman Unsal∗, Mateo Valero∗§, Luís Villa† // ∗Barcelona Supercomputing Center (BSC), Barcelona, Spain. Email: [email protected]; †Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Mexico City, Mexico; ‡ Institut de Microelectronica de Barcelona, IMB-CNM (CSIC), Spain. Email: [email protected]; §Universitat Politecnica de Catalunya (UPC), Barcelona, Spain. Email: [email protected] (author's final draft

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 103.3–105.5 rad m−2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 105 rad m−2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 105 rad m−2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 105 rad m−2 at 3 mm and −4.1 to 1.5 × 105 rad m−2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
    corecore