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The maturity level of RISC-V and the availability of domain-specific instruction set extensions, like vector processing, make RISC-V
a good candidate for supporting the integration of specialized hardware in processor cores for the High Performance Computing 
(HPC) application domain. In this paper1, we present Vitruvius+, the vector processing acceleration engine which represents the 
core of vector instruction execution in the HPC challenge that comes within the EuroHPC initiative. It implements the RISC-V
vector extension (RVV) 0.7.1 and can be easily connected to a scalar core using the Open Vector Interface (OVI) standard. Vitruvius+ 
natively supports long vectors: 256 Double Precision (DP) floating-point elements in a single vector register. It is composed of a set 
of identical vector pipelines (lanes), each containing a slice of the Vector Register File (VRF) and functional units (one integer, one 
floating-point). The vector instruction execution scheme is hybrid in-order/out-of-order and is supported by register renaming and

1New Paper, Not an Extension of a Conference Paper.
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arithmetic/memory instruction decoupling. On a standalone synthesis, Vitruvius+ reaches a maximum frequency of 1.4 GHz in typical
conditions (TT/0.80V/25°C) using GlobalFoundries 22FDX FD-SOI. The silicon implementation has a total area of 1.3 mm2 and
maximum estimated power of ∼920 mW for one instance of Vitruvius+ equipped with eight vector lanes.
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1 INTRODUCTION

The Covid-19 pandemic remarked the importance of scientific research. The heavy amount of computation needed to
characterize the SARS-CoV-2 virus’genome [33] proves that there is a tangible need of investing in High Performance
Computing (HPC) technologies to fit the computation requirements of the “race to Exascale” [18]. Generally speaking,
Exascale computing refers to the capability of a machine to execute at least 1018 operations per second [16]. Among
the commitments with these objectives [16][14][17][22], the European Processor Initiative (EPI) aims to creating a
sustainable hardware/software ecosystem that could sign the independence of Europe on computing systems [15].
Nonetheless, the challenge to build Exascale machines within a 20 MW power envelope has led to a focus away from
peak performance to energy-efficient performance. For instance, the 59th edition of the TOP500 list [44] revealed the
Frontier system at the Oak Ridge National Laboratory (ORNL) to be the first true Exascale machine, yet ranking in the
second position of the Green500 list [19]. This shows that energy efficiency is becoming a top priority for HPC facilities
[26][1][20]. The renewed interest in vector architectures due to their characteristic of efficiently exploiting Data Level
Parallelism (DLP) perfectly fits with the requirements of the Exascale challenges.

Historically, vector processing has always been associated with supercomputing. The golden era of vector processors
started with the introduction of the CRAY-1 [35] in 1976, which broke up with the memory-to-memory philosophy of
precedent machines like TI-ASC [45] and STAR-100 [7], instead introducing a Vector Register File (VRF) and interconnect
to allow data movement between the functional units and the vector registers [13]. Vector machines dominated the
supercomputing market for about 15 years, when they were extirpated by parallel machines based on multiple out-of-
order microprocessors, as the advances in CMOS VLSI technology allowed more transistors to fit on a die. Although
multicore architectures represent a valid approach to data-parallel problems, they still have efficiency issues due to
their high instruction fetch and decode overheads. The renaissance of vector processing is a direct consequence of the
slowdown of Moore’s law and the limitations on energy-efficiency imposed by the physics of CMOS circuit scaling
[9][11].

Vector processors operate on arrays of data, where a single datum of the array is referred to as a vector element
[10]. A dedicated Instruction Set Architecture (ISA) defines the vector architectural parameters, such as the number of
vector registers and the Maximum Vector Length (MVL). Particular features like reductions use common arithmetic
operations to reduce a vector register to a scalar value. They are also characterized by unique memory operations like
strided loads and stores, where the stride defines the increment, expressed in bytes, of memory locations marking the
Manuscript submitted to ACM
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beginnings of new vector elements, and gather-scatter operations, which locate vector elements by accessing memory
through a set of indices, represented by elements of another vector. When compared to Single Instruction Multiple Data
(SIMD) architectures, vector processors offer a higher level of abstraction. SIMD architectures, like the ARM Neon [32]
or the Intel AVX-512 [8], are characterized by the fact that more elements are packed in the same register, which can be
computed by the available functional units. In order to exploit DLP, the software needs to know how many functional
units, also called SIMD lanes, are available to produce effective code. Additionally, the maximum number of elements
that can be processed in parallel is limited by the size of the registers. Any attempt to increase the size of the registers
and/or the number of functional units implies the introduction of new dedicated instructions, reducing the portability
of the ISA. Ottavi et al. [29] solve this limitation by encapsulating the number of elements to process in the instruction
encoding and controlling it through a Control and Status Register (CSR). While this solution is feasible for specific
Machine Learning (ML) workloads, the number of maximum elements within one operation is still limited by the size
of the scalar registers. If the size of the scalar registers increases, new combinations of mixed-width operations are
possible, and the ISA needs to be modified at least to specify the new setting of the CSR that holds the SIMD width.
On the contrary, vector ISAs are agnostic of the number of available functional units, and the amount of elements
to be processed is only limited by the defined MVL. Advances in ISA offer vector architectures the opportunity to
expand beyond HPC to other market segments such as Digital Signal Processing (DSP) and multimedia applications.
Examples of it are the vector extensions for NEC [27], the ARM’s SVE [42], and the RISC-V vector extension (RVV)
[34]. The latter is currently gaining importance both in the academic and the industrial world [24]. RVV declares two
implementation-specific parameters [34]. The maximum size in bits of a vector element (ELEN), with ELEN≥8; the
number of bits in a single vector register (VLEN). Additionally, it includes CSRs which can be modified through specific
instructions to change the operational vector length, vl, the Selected Element Width (SEW), and the vector register
group multiplier (LMUL), which defines the number of vector registers to form a wider vector register group.

In this context, this paper presents Vitruvius+, a RISC-V decoupled Vector Processing Unit (VPU) which represents
the core of vector instruction execution in the HPC challenge that comes within the EuroHPC initiative. Our VPU is
based on RVV-0.7.1 and targets HPC applications using long vectors. Accordingly, the MVL is 256 Double Precision
(DP)-elements, or 16384 bits. By setting LMUL=8, Vitruvius+ can achieve an upper bound MVL of 2048 DP-elements. To
the best of our knowledge, this is the longest hardware vector length produced by a vector architecture. Vitruvius+
features an efficient hybrid in-order/out-of-order architecture boosted by vector register renaming, vector memory-to-
arithmetic operation chaining, dedicated support for reductions, and reconfiguration of the inter-lane interconnect.
Vitruvius+ is also the first VPU supporting the Open Vector Interface (OVI) [37] standard. It has been successfully
taped out using GlobalFoundries 22FDX (GF22FDX) as part of the EPI project. On a standalone synthesis, it reaches a
maximum frequency of 1.4 GHz in typical conditions (TT/0.80V/25°C).

The paper is organized as follows. Section 2 presents the state of the art and illustrates the baseline architecture.
Section 3 describes the vector microarchitecture in detail. Section 4 presents the outstanding features implemented in
Vitruvius+. Section 5 presents the approach we follow for our evaluations. In Section 6, we report the results of our
experiments. Finally, Section 7 reports future plans and concludes this manuscript.
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2 BACKGROUND AND BASELINE ARCHITECTURE

2.1 State of the Art

The resurgence of vector processors is proved by several recent works delivered by both academic and industrial
organizations. Hwacha [21] is a single-lane decoupled vector accelerator which implements vector instructions as a
custom extension. Several Hwacha versions have been disclosed, with the work in [6] drastically improving the energy
efficiency. Ara [23] implements a subset of RVV-0.5 and was taped-out featuring a MVL of 256 DP-elements. Arrow [4]
targets a Field Programmable Gate Array (FPGA) implementation and supports a subset of RVV-0.9. Similarly, Vicuna
[30] was also designed for FPGA, and implements RVV-0.10. RISC-V vector processors have also been released by
industrial entities. The Alibaba T-Head Xuantie910 [5] is a multi-core 12-stage out-of-order processor which supports
RVV-0.7.1 with variable number of vector pipelines each operating on 128-bit vector registers. Andes’ NX27V [2] is
the first vector processor to implement RVV-1.0, and the VLEN can be configured from 128 to 512 bits. SiFive’s X280
[39] and P270 [40] also implement RVV-1.0, with 512-bit and 256-bit supported VLEN, respectively. Finally, among the
non-RISC-V VPUs, the NEC SX-Aurora Vector Engine (VE) [27], and the Scalable Vector Extension (SVE) VE of A64FX
from Fujitsu [28], are the most popular.

2.2 Baseline Architecture

Vitruvius+ is the next generation of Vitruvius2, the VPU of the first phase tapeout of EPI [43]. Therefore, Vitruvius is
the baseline architecture which Vitruvius+ extends upon. The main design challenges are:

• interface with the scalar core;
• definition of the MVL, in particular, to justify the long-vector-oriented design;
• implementation of the VRF, to support long vectors and vector register renaming;
• out-of-order execution of vector operations;
• definition of the lane interconnect.

The following sections present the state space exploration of the aforementioned design features.

2.2.1 Interface with the scalar core. In EPI, Vitruvius is coupled to the Semidynamics3 Avispado scalar core [38]. They
communicate through the OVI standard [37]. Figure 1 shows the transaction groups composing OVI. One of the
characteristics of OVI is that the information is transmitted through a credit-based system. In this context, a credit
represents an available resource, like a FIFO queue entry, to allow the transmission of certain information. For example,
when an instruction is granted execution, Vitruvius frees a slot in its instruction queue, and a credit is returned to
Avispado to notify it that Vitruvius is ready to receive a new vector instruction. Following, we briefly describe the main
components, while more details can be found at [37]:

• ISSUE: Vitruvius receives instructions from the scalar core on the signal inst, together with the 64-bit scalar
operand scalar_opnd, the instruction identifier sb_id, and a valid. Whenever Vitruvius consumes the instructions,
it returns a credit to get ready for receiving a new instruction from Avispado.

• DISPATCH : it is used for marking an instruction as non-speculative (it is next_senior), or to kill.
• COMPLETED: upon completing an instruction, it is marked as valid, together with the eventually generated
floating-point exception flagsfflags, the eventual saturation bit for fixed-point operations vxsat, the eventual

2Details of Vitruvius microarchitecture have never been published before. We presented an overview in one of the RISC-V events with no proceedings.
3https://semidynamics.com/
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scalar result dest_reg, the vstart corresponding to the last valid vector element processed by a vector load, and
eventually the illegal bit if the instruction was decoded as illegal.

• MEMOP : in OVI, it is the scalar core that generates the memory requests to execute vector memory operations.
Unlike [12], Vitruvius does not have any access to the memory hierarchy. The sync_start is set by Vitruvius to
allow the start of memory requests. Upon completing the requests, the sync_end is set together with the memory
instruction identifier sb_id, and the eventual vector element whose related memory request caused an exception,
like a page fault, provided on vstart_vlfof.

• LOAD: on executing a vector load, Avispado sends the data in the shape of a whole cache line (512 bits)4, provided
on data and flagged by valid, together with metadata provided on seq_id, to locate vector elements in the cache
line. On a vector masked load, the mask is applied if mask_valid is set.

• STORE: on executing a vector store, Vitruvius sends the 512-bit data flagged by a valid only if there are credits
available. By setting credit, Avispado allows Vitruvius to send new data.

• MASK_IDX : it is used in case of masked and/or indexed memory operations. The item can represent 64 mask
bits, a 64-bit index, or a mask bit placed in the most significant bit with the others carrying a 64-bit index, for
masked, indexed, and masked-indexed memory operations, respectively. Indexed memory operations set the
last_idx for the last index to send.

Fig. 1. Open Vector Interface (OVI) overview. Retrieved from [37].

2.2.2 Long-vector design. Hardware-supported vector sizes depend on the characteristics of the target applications.
For example, short vectors are common in stencil and graph processing kernels, while HPC, physical simulation, and
financial analysis applications feature long vectors. Therefore, the applications can affect the decision on the MVL to
support. We analyzed the target applications of the EPI project and designed an architecture that supports long vectors,
with a MVL of 256 64-bit elements. Using long vectors is beneficial for the following reasons:

• Hide memory latency by combining spatially-parallel with temporally-parallel execution.
4Avispado is not open-source, so we do not know the exact size of the cache, although [38] reports values between 8-32 kB.
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• Improve efficiency by avoiding fetches, especially for codes with many loops.
• Reduce code size and dynamic instruction count.

Vitruvius is intended to accelerate HPC applications showing high DLP. We quantified “long vectors” based on the
study reported in [31]. It shows that for applications featuring regular DLP, when using long vectors, the number of
total instructions dramatically drops, not only because of the many scalar instructions being replaced by a single vector
instruction, but also due to the reduced loop counts and control instructions. Another important aspect is the start-up
time, which represents the latency in clock cycles to fill the vector execution pipeline. The start-up time is mainly
determined by the execution latency of the vector functional units, and the design of the VRF. For long vectors, the
initial start-up time can be amortized over the several cycles of execution for the operations, while for short-vector
implementations, which typically complete operations in less than a dozen cycles, the start-up time can drastically
decrease performance. For these reasons, we designed Vitruvius to support long vectors, where each vector register has
a MVL of 256 64-bit floating-point elements, like SX-Aurora VE [36], and Ara [23].

2.2.3 VRF. The VRF design and the prior microarchitecture state space exploration was driven by the following high
level goals:

• support for long vectors, where each vector register can hold up to 256 DP-elements, as explained in Section 2.2.2;
• renaming capabilities, allowing for lightweight out-of-order execution mechanism;
• the technology node of the EPI project: GF22FDX, targeting a nominal frequency of 1 GHz.

To allow a more aggressive scalar-vector decoupling empowered by lightweight out-of-order execution eliminating
Write After Write (WAW) and Write After Read (WAR) vector dependencies, we designed the VRF with 40 physical
registers to support vector register renaming. Therefore, the whole VRF size, expressed in bytes, is given by:

𝑇𝑜𝑡_𝐵𝑦𝑡𝑒𝑠_𝑉𝑅𝐹 = 𝑁𝑢𝑚_𝑉𝑅𝑒𝑔𝑠 ·𝑉𝑅𝑒𝑔_𝑀𝑎𝑥_𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 · 𝐸𝑙𝑒𝑚𝑒𝑛𝑡_𝐵𝑦𝑡𝑒𝑠

where Num_VRegs indicates the 40 physical vector registers, VReg_Max_Elements represents the MVL of 256 DP-
elements, and Elements_Bytes is the size in bytes of each vector element. With these design parameters, the size of the
VRF amounts to 80 kB. We organized Vitruvius in a lane-based fashion, where each lane contains a slice of the VRF and
functional units. The 8-lane configuration splits the VRF into 10 kB slices, one such slice per lane. Therefore, we explored
the available memory instances included in the GF22FDX register file portfolio, and conducted an experimental study
on the type of memory to use. We generated different configurations using the foundry-compatible memory compilers
and synthesized them for a clock period of 800 ps. Table 1 summarizes the results. It shows that multi-ported register
file configurations are not desirable either because of the large area overhead, or because of the timing violations and
the high estimated power consumption. Therefore, we opted for a VRF configuration that instantiates five 2 kB 1RW
SRAM banks in each lane. Beside the lower area overhead, this design choice is also driven by another observation. To
achieve a peak performance of one DP-Fused Multiply-Add (FMA) and one DP-memory-access per cycle, the lane local
Finite State Machine (FSM) orchestrates the vector instruction execution over five states, three of which are for reading
the source operands of a FMA, one for the memory access, and another for the arithmetic write-back. This means that
when the pipeline operates at full speed, the functional units produce five results in five cycles, hence the minimum
number of banks to support write-back is five. This way, the VRF can sustain the target throughput yet with the lowest
impact on area.

Manuscript submitted to ACM
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Table 1. Early state space exploration results for different VRF configurations (1RW = shared read/write
port; 1R1W = 1 read port and 1 write port; 1R2W = 1 read port and 2 write ports; 3R2W = 3 read ports and
2 write ports).

Clock period: 800 ps (1.25 GHz)

Configuration Ports Cell Type Area (µm2) Slack SSa/TTb(ps) Power (mW)

5x2kB 1RW SRAM 21005.726 0/193 25.2674
1x10kB 3R2W Latch 338725.864 0/0 119.572
1x8kB 3R2W Latch 273288.375 0/0 107.601
1x10kB 1R2W Latch 239603.614 0/0 98.6253
1x8kB 1R2W Latch 184466.954 0/0 78.5065
5x2kB 1R1W SRAM 35763.728 -429/-68 32.6354

a Slow corner conditions (SS/0.72V/125°C).
b Typical corner conditions (TT/0.80V/25°C).

2.2.4 Out-of-order Execution. Vitruvius schedules the execution using an out-of-order execution mechanism. First,
the instructions pass through the renaming stage that eliminates the WAW and WAR dependencies. The renamed
instructions are then split into two concurrent streams by placing them either in the memory or the arithmetic
instruction queue. This equips Vitruvius with lightweight out-of-order execution capabilities. As an example, imagine a
sequence of vector-vector add operations, vadd.vv, followed by a sequence of vector strided loads, vlse.v. The renaming
unit eliminates every WAW dependency in the instruction flow. The sequence of vadd.vv is placed in the arithmetic
queue, while the loads go to the memory queue. This allows for the first vector load to overlap with the execution of
the first vadd.vv, thus reducing the time for completion.

2.2.5 Lane Interconnect. The modular VPU design features independent vector lanes, which need to exchange operand
data for certain RVV instructions such as reductions or permutations. Therefore, a lane interconnect needs to be
implemented. The lane interconnect design and the prior microarchitecture state space exploration was driven by the
following goals:

• High level of determinism, so that it is possible to know exactly the latency of a packet in the lane interconnect
and schedule new transfers accordingly. Note that this requires a contention-free network even at peak load;

• Ease of routing and simplified flow control scheme;
• Low power and area impact while being able to support themost common transfers with an acceptable throughput.

Therefore, considering that we target up to 8 vector lanes, we selected a ring topology as the lane interconnect. This
well-known topology has the property of being completely deterministic, meaning that the latency of a packet traveling
in the network can be calculated upfront and relies only on the distance between the sender and the receiver. There
is no packet deflection in this network. Therefore, it does not need any complex routing algorithm nor a centralized
controller. A router in this network can either accept the incoming data, or let it pass to the direct neighboring router.
For these reasons, we preferred a ring topology over other structures, such as the popular mesh topology. A mesh has
typically more links than a ring thus reducing the maximum distance between nodes in the network. However, more
links contributes to higher area and power consumption, due to the internal routers now having three ports. Within the
set of applications we target, listed in Section 6, some of the most common RISC-V instructions that need inter-lane
communication are vslideup and vslidedown, which move elements in a vector register up and down by a specified
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offset, respectively. For example, when executing a vslide1up, element 0 ends up in the position of element 1, element 1
ends up in the position of element 2, and so on. That is, lane 0 sends elements to lane 1, lane 1 sends elements to lane
2, and so on. To justify our choice of using a ring interconnect, we developed an in-house cycle-accurate high level
simulator modeling a mesh and a ring. We modeled the mesh as a 2x4 configuration for the eight lanes in Vitruvius,
using the common XY routing algorithm. The data movement happens in only one direction in both configurations.
Figure 2 represents the analyzed configurations. In this simple model, the intermediate nodes of the mesh always try to

(a) Ring topology. (b) Mesh topology.

Fig. 2. Configuration of the evaluated lane interconnect topologies.

use the shortest path to reach the destination, if available. Both networks satisfy the following criteria:

• There are no buffers in the network. Buffers are one of the most power- and area-consuming elements in a
network, and their inclusion conflicts with the requirement of low power and area impact.

• There is only one physical link connecting a node to another, with reconfiguration capabilities. This means
that the data movement is dynamically set according to the type of instruction to execute and the related offset,
to reach the destination with the less number of cycles. For example, executing a vslideup with offset 5 in the
clockwise direction, with an 8-lane configuration, is the same as executing a vslidedown with offset 3 in the
counterclockwise direction5. This reduces the cases to study to offset values between 1 and 4.

We simulated both configurations using patterns for the vslideup operation. Table 2 reports the results of the simulations
for the different offsets, assuming vectors of 256 elements. Results show that there is no clear advantage in using a mesh
interconnect for the evaluated traffic patterns. In particular, it can be noted that the mesh performs slightly worse than
the ring for offset values 3 and 4. This is due to the fact that in this analysis the mesh always tries to use the shortest
path for the data transfer. For these cases, the usage of the intermediate direct links causes other nodes to delay the
packet injection which finally increases the total latency. A disclaimer that this analysis is not suggesting that a ring
topology is better than a mesh. This study shows that the design of the inter-lane interconnect depends on the target
traffic patterns. For instance, the mesh is actually a ring with the intermediate connections, and by using the same links
as for the ring makes the throughput the same for both configurations. However, this confirms that there is no usage
of the intermediate links for the target traffic This particular case is important because it actually resembles the data
movement that occurpatterns, so there is no advantage in using a mesh. The ring is more area- and power-efficient
than the mesh because of the easier control flow to route the packets and the absence of the intermediate connections.

5In this case, lane 0 targets lane 5 as the final destination of its packets. Therefore, by moving data in the counterclockwise direction, the ring takes three
cycles to complete the transfer.
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Table 2. Performance comparison between the ring and the mesh lane interconnect for the execution of vslideup with different offset
values. Column Packets represents the number of elements to transfer and is obtained by subtracting the offset from the vl.

Operational vl= 256

Configuration Offset Packets Cycles Throughput (DP-element/cycle)

Ring

1 255 33 7.76
2 254 65 3.94
3 253 97 2.64
4 252 129 1.98

Mesh

1 255 33 7.76
2 254 65 3.94
3 253 99 2.59
4 252 131 1.95

3 MICROARCHITECTURE

In this section, we describe the microarchitecture of our VPU, giving details on the most important blocks. A high level
block diagram is shown in Figure 3.

3.1 Front end

The front end processes the instructions received from the scalar core. It includes the pre-issue queue, which uses a
credit-based system to get new instructions from OVI. The unpacker classifies the instruction according to its type
and performs a fine-grain decoding, providing on the output a vector of control bits used by the lanes to understand
what kind of operation to apply. The renaming unit, already mentioned in Section 2.2.4, resolves the WAR and WAW
dependencies, empowering the lightweight out-of-order execution. It holds the Register Alias Table (RAT), which maps
each logical register to the last assigned physical register, and the Free Register List (FRL), which keeps track of the
available physical registers. The queue demultiplexer splits the memory and the arithmetic instruction streams onto
different queues, enabling parallelism.

3.2 Issue Stage

Instructions from the queue demultiplexer are split and stored in the issue FIFO queues according to their type. The
number of queue entries is parametrized. Control logic in the issue stage continuously checks the availability of the
resources to be used by the instructions at the head of the queues. This block analyzes the decoded information of
arithmetic operations to enable back-to-back execution. This feature, which we term overlapping, allows for opportunis-
tically starting a new instruction before the previous one has finished, to fully exploit the vector arithmetic pipeline.
This mechanism is shown in Figure 4. We name inbound an instruction at the execution stage that is reading the
vector operands from the VRF. As soon as all the vector source elements have been read, the instruction becomes
outbound. The overlapping enabled by the issue stage control logic allows, at this point, another instruction to enter the
execution phase by making it inbound, so to start reading the source operands. By the time the first instruction exits the
outbound phase, which happens when it has written-back all the results, the second one may have already generated
the first results. Therefore, the effect of overlapping is that the second instruction advances faster in writing-back its
results. Figure 4 depicts this scenario, showing the reduction in the number of cycles to complete the instructions when
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Fig. 3. Vitruvius+ top-level block diagram for the 8-lane configuration.

overlapping is enabled. While in a certain way, overlapping resembles the traditional instruction pipelining, it actually
enables different lanes to start the execution of an instruction earlier, in case the operational vl is higher than the one
of the previous operation. This corresponds to concurrent execution of instructions in different lanes.

Fig. 4. Overlapping of vector instructions example.
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3.3 Memory Units

Vitruvius+ supports vector memory operations through a dedicated set of units. These units use the OVI signals,
while also communicating with the vector lanes. As explained in Section 2.2.1, Vitruvius+ does not have access to the
memory hierarchy, and it is the scalar core that performs memory accesses for vector memory operations. The Load
Management Unit (LMU) processes data coming from OVI when executing a vector load. Data reaches the vector unit
at the granularity of a cache line, as explained in Section 2.2.1. The Store Management Unit (SMU) interacts with the
scalar core through the credit system described in Section 2.2.1. Finally, the Item Management Unit (IMU) is in charge
of managing the transactions for the MASK_IDX bus of OVI in Figure 1, thus it is involved in the execution of masked
and/or indexed vector memory operations.

3.4 Vector Lane

3.4.1 VRF. Each lane holds a slice of the VRF, with the slices being composed of five single-port 2kB SRAM banks, as
explained in Section 2.2.3. The vector registers are organized in an interleaved fashion, as shown in Figure 5. That is,
the first eight bytes are always in lane 0, the next eight bytes always in lane 1, and so on. The distribution of the vector
elements in the VRF is a microarchitecture decision. The interleaving has some benefits. When executing a stride-1
vector load, each lane can receive exactly one DP-element per cycle from the input 512-bit cache line. This guarantees
that no lane gets starved from not receiving elements in case there is an arithmetic instruction waiting for data to
arrive from a vector load. The VRF banks can be accessed independently but, on a read, a full set of five elements, one
per bank, will be tentatively gathered. In RVV, the mask register is implicitly vector register v0. However, the mask
registers are kept separated from the VRF, to avoid possible bank conflicts when executing predicated operations.

Fig. 5. VRF 64-bit element mapping showing the interleaved distribution.

3.4.2 FSM. Each lane features a FSM in charge of managing the reads and writes from/to the VRF. It is based on a
5-state structure (plus an idle state to avoid unnecessary state transitions and contributing to energy-efficiency). The
FSM leaves the idle state upon having received a start signal from the local control unit and/or having detected that
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some memory operation is executing. Then, the FSM cycles over the 5 active stages. Elements read from the VRF are
buffered and then provided to the functional units. Since each read provides five 64-bit values, and the FSM state repeats
every 5 cycles, arithmetic operations can fully exploit the functional unit pipelines, providing a 64-bit result per cycle,
after paying the initial startup time. However, as presented in Section 2.2.2, the startup time is amortized over the many
operations executed by managing long vectors. Moreover, the FSM capability of addressing each bank independently is
leveraged to write to the VRF combining data from different in-flight vector loads.

3.4.3 ExecutionWrapper. The source buffers receive vector elements from the VRF in preparation towards the functional
units. Each lane features a Floating Point Unit (FPU), developed by the University of Zagreb6, that performs floating-
point operations, and an Arithmetic Logic Unit (ALU), that manages integer and fixed-point computations. All the units
in the vector lanes are fully pipelined (except square-root and division) and have a throughput of 64-bit/cycle, working
in SIMD fashion when the element width is less than 64 bits. The FPU supports all classes of operations, including
FMA, division, square root, comparison, and other types like widening and narrowing operations. Integer operations
executed in the ALU also range from the most common ones, like FMA, multiplication, addition, and bit manipulation,
to others like narrowing, widening, and fixed-point. Additionally, our vector unit supports all type of vector reduction
operations specified by the RVV specifications.

3.5 Ring Interconnect

The class of permutation instructions in the RISC-V V-extension involves vector elements shuffling and manipulation.
Due to the mapping presented in Figure 5, the lanes need a medium to transfer/receive data to/from other lanes.
As discussed in Section 2.2.5, a unidirectional ring topology is used to interconnect the lanes. It is designed to have
a single-cycle latency for one-hop transfers –i.e., to transfer data from one lane to its direct neighbor. Reduction
operations can benefit from leveraging this type of interconnect for transferring partial results to the neighboring lanes.
Additionally, the ring interconnect executes the slide operations, that move elements of a vector register given an offset,
and vector register gather operations, that use one vector register as a set of indices and realize any permutation of the
vector register used as source of data. The maximum injection rate of the ring interconnect is 8 DP-elements per cycle.

3.6 Reorder Buffer

As the execution of arithmetic and memory instructions can complete in an out-of-order way, a Reorder Buffer (ROB)
is used to keep the instruction commit order. While receiving information about any in-flight instruction, only one
instruction per cycle is marked as completed on the COMPLETED bus of OVI in Figure 1. If any exception occurs,
the ROB notifies the scalar core about this event through specific signals of the interface, and internally triggers the
roll-back process in case the vector unit needs to go back to a previous safe state. While doing so, the ROB disables any
possibility for new instructions to proceed in the front-end until the roll-back phase is finalized.

4 VITRUVIUS+ OUTSTANDING FEATURES

Following, we describe the outstanding features that Vitruvius+ implements, which distinguish it from the majority of
state of the art solutions:

• Implements memory-to-arithmetic vector instruction out-of-order chaining.
• Optimizes the execution of vector-vector move operations, by introducing what we call the fast move operations.

6https://www.fer.unizg.hr/en
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• Features reconfiguration capabilities in the inter-lane ring interconnect.
• Introduces dedicated support for accelerating the execution of vector reduction operations.

The impact of these new implemented features is highlighted in Section 6, while an extensive description of their usage
is provided in the next paragraphs.

4.1 Vector Out-of-Order Chaining

A common features of vector processors is chaining. Chaining forwards the results of a vector operation to another
operation which uses them as source operands. Practically, it executes a bypass of the vector elements produced
as results of a functional unit to another functional unit that uses them as input for its operation. If we consider
arithmetic-to-arithmetic chaining, Vitruvius+ does not benefit from it, because only one arithmetic instruction at a time
can run in a lane. The type of vector chaining that is beneficial to our VPU is the memory-to-arithmetic chaining. As
explained in Section 2.2.1, OVI specifies that the scalar core accesses memory on behalf of a vector load operation. This
makes the order of arrival of the vector elements unpredictable. Referring to the VRF organization in Figure 5, it is
possible, for example, that lane 0 receives the element group 40-72, before it receives the group 0-32. To handle this case,
we implement an optimization to keep track of the availability of the element groups and start the dependent arithmetic
operation if at least a group is ready. The availability of the vector element groups is controlled by a specific structure
inside the lanes which we call the ready bits table. This structure is composed of single bit per group of elements for each
vector register. The implementation of this mechanism, which we call vector out-of-order chaining, helps overcoming
the limitation of the OVI standard to disallow to serve the memory requests on the VPU side. Figure 6 explains through
an example how the out-of-order chaining works. A vadd.vv uses v2 as one of its source vector operands, while v2 is
also the destination of a previous vle.v. Vector register v2 is represented with some elements already written in the
VRF, and some not ready elements marked with the undefined value x. The ready bits for v2 are also depicted. For
simplicity, we show only the VRF slice of lane 0, therefore the element mapping presented in Section 3.4.1. At cycle T, a
new 512-bit cache line is received with five valid elements, with element 80 belonging to lane 0. This element completes
the third element group from the top in the VRF, and the corresponding ready bit is set to 1. At cycle T+1, this element
group is read from the VRF and sent to the functional unit to start the vadd.vv. Note that, as discussed, this element
group is computed before groups one and two, thus allowing for out-of-order write-back of the results.

4.2 Fast Moves

In RVV, the vector-vector move is encoded as vmv.v.v vd, vs1, and copies values of vs1 into vd, up to the current vl. We
made a preliminary analysis on a subset of the target applications where vmv instructions are executed. Table 3 shows
the number of vmv compared to the total number of arithmetic instructions. In Jacobi-2D and Streamcluster, this type
of instruction represents a considerable percentage of the overall arithmetic operations. With no optimizations, the
execution of this instruction proceeds in the same way as for other arithmetic instructions: it consumes one physical
register due to renaming, and accesses the VRF to read the source vector and to write it into the destination vector.
The overall effect is to create a copy of a vector into another. Therefore, we designed an optimization in Vitruvius+
that enables a smart execution of vmv instructions, which we call fast move. In particular, the instruction is completely
resolved at renaming. Figure 7 illustrates the mechanism. To support the optimization, we included two additional
structures int the renaming unit. The element table refers to the elements assigned to a vector register the last time it
was the destination of a vector operation. The 40 alias counters, one per physical register, keep track of the number of
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Fig. 6. Detail of the out-of-order chaining mechanism. By keeping track of the availability of the element groups, the operations can
generate results in an out-of-order manner.

Table 3. Percentage of vector-vector moves over the total arithmetic instructions for some of the target benchmarks.

Benchmark Total Arithmetic Instructions Total vmv.v.v Instructions Percentage

Jacobi-2D 20402 6163 30.2%
Streamcluster 745236 165608 28.6%

LavaMD 37376 2048 5.5%
Blackscholes 672000 9600 1.4%

MMUL 65793 256 0.4%

times the same physical register is allocated to multiple logical registers. When the renaming unit works in the standard
mode, associating one physical register to a unique logical register, the alias counter of that physical register is 0. On
the contrary, whenever a fast move is executed, one physical register is associated with multiple logical registers, and
the alias counter is increased according to the number of fast moves which rename to that physical register. We assume
the initial state is the one represented in Figure 7a, and the instructions enter the renaming stage in the shown order. In
Figure 7b, the vadd renames its destination register v28 to the physical register vr32. The instruction will be issued
to the lanes, freeing the old physical register vr28 when retired. Next, a vmv enters the renaming stage as shown in
Figure 7c. This instruction can be executed in the fast mode. In one cycle, it accesses the RAT to read the last physical
registers assigned to v3 and v28, which are vr3 and vr32, respectively. In the next cycle, it writes vr32 to the RAT entry
corresponding to v3, and updates the alias counter of vr32 and the new value of assigned elements in the element table.
In the next cycle, the instruction is completed as it does not need to be executed in the vector lanes. From now on, v3
is mapped to vr32 with vector length 13. We say vr32 is now an “alias” of v3. Therefore, the fast move optimization
reduces the latency of execution of the vmv to just three cycles, and reduces power dissipation by avoiding unnecessary
accesses to the VRF. Similarly, in Figure 7d another fast move is executed. The process is the same as the one described
before, with the alias counter of vr32 increased to 2. However, note that this time the element table entry for v0 is
updated with the elements from v3, instead of the vl value that comes with the instruction. The lowest number of valid
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elements between the last assigned to the physical vector register used as alias and vl is selected when executing the
fast move at renaming. In this way, when accessing v0, it will read valid elements only until vl=13. When a fast move is
retired from the ROB, the alias counters are decreased. The physical register is written back to the FRL when the alias
counter is 0. If we imagine a long sequence of vmv, by executing them in the fast mode we could potentially have all
the 32 logical registers renamed to the same physical register. This means that only one out of the 40 physical registers
is allocated. The other 39 are available for renaming new instructions. In this way, the vector instruction window can
be expanded as more instructions enter the vector pipeline.

(a) Initial state. (b) Renaming of vadd.

(c) Renaming of the first fast move. (d) Renaming of the second fast move.

Fig. 7. Fast move mechanism at the renaming stage.

4.3 Switched Ring Reconfiguration

The inter-lane interconnect of our VPU is built over a unidirectional ring topology. This is an extremely low-power
and area-efficient interconnect, while providing sufficient support for the data movement operations needed by our
applications. As explained in Section 2.2.5, vslideup and vslidedown are the most common data movement operations
in our set of applications. Therefore, Vitruvius+ implements an optimization in the inter-lane ring to enhance the
execution of these instructions. In the baseline unidirectional ring topology, like the one shown in Figure 2a, in the
8-lane configuration, eight packets can be injected into the ring where each hop takes one cycle, until they reach their
final destination. Therefore, in the worst case, assuming the data movement occurs in the clockwise direction, a packet
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reaches its destination after a maximum of 7 cycles, which happens when executing a vslideup with offset 7, for example,
since lane 0 targets lane 7 as the final destination of its packets. By introducing limited reconfiguration capabilities in
the ring, the maximum latency in the worst case scenario is reduced to 4 cycles, at the cost of just a 2% of area overhead
and no timing issues. The reconfigurability of the links depends on the type of instruction to execute and the related
offset value. By taking the previous example of the vslideup with offset 7, with this optimization the ring recognizes
that is more convenient to move data in the counterclockwise direction to reduce the latency of the operation. In this
way, packets sent by lane 0 reach lane 7 in only one cycle. Figure 8 presents the reconfiguration of the inter-lane ring to
move data in either one or the other direction. In particular, the clockwise direction is selected when executing vslideup

(a) Data movement in the clockwise direction. (b) Data movement in the counterclockwise direction.

Fig. 8. Inter-lane ring configurations for the data movement.

with offset values whose𝑚𝑜𝑑8 is between 1 and 3, and vslidedown with offset values whose𝑚𝑜𝑑8 is between 5 and 7.
On the contrary, the counterclockwise direction is selected when executing vslideup with offset values whose𝑚𝑜𝑑8 is
between 5 and 7, and vslidedown with offset values whose𝑚𝑜𝑑8 is between 1 and 3. The expression𝑚𝑜𝑑8 is the modulo
of the number of lanes7. If the result of𝑚𝑜𝑑8 is 4, the direction of movement is selected by the operation itself -i.e., by
default, clockwise for vslideup, counterclockwise for vslidedown.

4.4 Vector Reductions Enhancement

RVV-0.7.1 includes vector reduction instructions. These operations take a vector register and a scalar held in element 0
of a second vector register, and perform a reduction using some binary operator. The result is then stored in element 0
of the destination vector register. The ISA distinguishes between ordered and unordered reduction operations. Ordered
vector reductions operate on the element values in order, starting with the scalar value held in element 0 of the second
vector operand. Unordered reductions provide some flexibility on how to operate with the vector elements. Vitruvius+
supports all the reduction instructions listed in RVV-0.7.1. The FPU and the ALU share a common structure for the
execution of reductions, called reduction handler. The reduction handler splits the execution of reduction operations
into two phases:

• Intra-lane reduction. It refers to the initial steps to reduce the vector elements locally in each lane, generating
intermediate results for the second phase.

• Inter-lane reduction. Reduce the partial results from the first phase to the final scalar result to be placed in element
0 of the destination vector register.

Because of the element distribution observed in Section 3.4.1, the ordered reduction operations effectively use only the
inter-lane phase, since each value has to be transmitted to the neighbor lane for each step of the computation. Ordered
and unordered reductions use the inter-lane ring for the inter-lane phase. However, the flexibility to compute the source
7The mechanism holds for a generic power of 2 Num_Lanes. The maximum latency in ring is therefore Num_Lanes/2.
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vector elements in the unordered reductions allows for optimizing both phases. Assume the operation is a floating-point
reduction sum, vfredsum.vs vd, vs2, vs1, with the source vector operands being vs2 and vs1, with the latter providing
the element 0 as the initial scalar value. The final result is given by 𝑣𝑑 [0] = 𝑣𝑠1[0] + 𝑣𝑠2[0] + 𝑣𝑠2[1] + . . . + 𝑣𝑠2[𝑣𝑙 − 1].
Being an unordered reduction, the sequence of operations can be optimized. Figure 9 shows the optimization for the
intra-lane phase. It depicts a set of N 64-bit accumulators which are used as inputs to the functional unit, with the other
input being elements of vs2. This structure is placed in all the lanes. We define the array vsrc for each lane as: 𝑣𝑠𝑟𝑐 [0] =
𝑣𝑠2[0], 𝑣𝑠𝑟𝑐 [1] = 𝑣𝑠2[8], 𝑣𝑠𝑟𝑐 [2] = 𝑣𝑠2[16], . . . for lane 0, 𝑣𝑠𝑟𝑐 [0] = 𝑣𝑠2[1], 𝑣𝑠𝑟𝑐 [1] = 𝑣𝑠2[9], 𝑣𝑠𝑟𝑐 [2] = 𝑣𝑠2[17], . . . for
lane 1, and so on, according to the element mapping in Figure 5. The first N elements of vsrc are directly placed as
initialization value of the accumulators, with the exception of lane 0, where the first accumulator is initialized with
𝑣𝑠1[0] + 𝑣𝑠𝑟𝑐 [0]. At step 0, the first pair of operands to enter the pipelined functional unit is (𝐴𝑐𝑐 [0]; 𝑣𝑠𝑟𝑐 [𝑁 ]). At step
1, while this pair is already in the execution pipeline, a new accumulator is selected and a new pair of operands feeds
the functional unit. The mechanism keeps selecting a different accumulator in a round-robin fashion. When all the
elements of vsrc local to each lane are computed, the final step combines the N results in the accumulators to produce a
single value. After that, the partial results of the lanes need to be combined to finalize the reduction operation.

Fig. 9. Usage of the accumulators for the optimization of the intra-lane phase of a vector reduction.

To combine the partial results of the lanes, the inter-lane ring is used. A naive implementation would pass the result
of lane 0 to lane 1, compute a new partial result, then pass it to lane 2 and repeat the process, until all the partial
results are computed to generate the final scalar result. This mechanism is strictly sequential and does not benefit from
the parallelism of the multi-lane organization. Therefore, we design an additional optimization for the execution of
unordered vector reductions with the objective of parallelizing the computation of the final result. By orchestrating the
computation steps between pairs of lanes, the latency of the inter-lane phase can be reduced, as well as the number of
data transfers in the inter-lane ring. This is done by scheduling the operations in a tree-like fashion, as represented in
Figure 10. In step 1 all the lanes are involved in the computation of partial results by operating in pairs. Thus, three
computations are parallelized. In step 2, the results generated as the outcome of step 1 are further processed by only
two pairs of lanes. Then, step 3 operates on the last two partial results and generates the final scalar result to be stored
in element 0 of the destination vector register, held in lane 0 as per the VRF mapping shown in Section 3.4.1.
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Fig. 10. Tree-like scheduling of the operations for the inter-lane phase of a vector reduction.

5 METHODOLOGY

5.1 Experimental Setup

Vitruvius+ is fully described at Register Transfer Level (RTL) using the SystemVerilog language. The generated RTL code
passes through RTL simulation for functional verification, synthesis, and physical design. Functional verification, driven
by randomly generated binaries and directed tests, is performed through a dedicated Universal Verification Methodology
(UVM) environment. It is based on a co-simulation scenario with the Spike [41] RISC-V ISA simulator as a golden
reference for the vector instructions. We use QuestaSim-64 2021.3_2 for the RTL simulation. The tests are executed
on both Spike and Vitruvius+. The check with Spike is done on a per-instruction basis. In case of any mismatch, the
simulation stops and information of the discrepancies is generated to ease debugging. Then, we synthesized Vitruvius+
targeting GF22FDX using Cadence® Genus™ Synthesis Solution 19.11. The generated netlist is then used for the
physical implementation phase with Cadence® Innovus™ 19.11. The netlist is also used in the aforementioned UVM
environment to run our set of vectorized benchmarks, with back-annotation on timing information to estimate the
switching activity for each of the selected applications. Then, we used this information in Cadence® Joules™ RTL
Power Solution to extract power metrics.

5.2 Benchmarks Description

We benchmarked several long-vector compatible kernels from the HPC applications and other domains [31]. Among
the HPC applications, axpy represents a common kernel in applications based on Basic Linear Algebra Subprograms
(BLAS). Because of its low arithmetic intensity –i.e., 3 memory operations for each arithmetic, it is a typical memory-
bound kernel. The second is Matrix-Matrix Multiplication (MMUL), a compute-bound BLAS kernel highly used for
benchmarking as it gives insights on the top performance of the system. The Fast Fourier transform (FFT) kernel is an
efficient method for computing the discrete Fourier transform of a sequence of complex numbers. From the molecular
dynamics domain, we have LavaMD. This application calculates the particle potential and relocation due to mutual
forces between particles within a large 3D space. Another kernel is Blackscholes, which represents the broad field
Manuscript submitted to ACM



Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 19

of analytic PDE solvers and their application in computational finance. Jacobi2D is part of the PolyBench suite and
implements an iterative algorithm for calculating the solutions of a diagonally dominant system of linear equations.
Pathfinder uses the ghost zone optimization technique to find the shortest path on a 2-D grid. Finally, Streamcluster

solves an online clustering problem by assigning each of the input points to its nearest center.

6 EXPERIMENTAL RESULTS

In this section, we present the experimental results of our VPU, including comparisons with state of the art vector
processors.

6.1 FPGA Evaluation

Vitruvius+ was synthesized for the preliminary FPGA evaluation using Vivado® 2020.1 on a VCU128 FPGA from Xilinx.
We used specific micro-kernels for evaluating the impact of the overlapping and the vector reductions enhancement. To
characterize the impact of overlapping, we created a sequence of back-to-back FMA operations first for a version of
the VPU that does not enable overlapping, and then enabling this feature. We ran this test for a considerable range
of vl values. Figure 11a compares the performance in terms of DP-FLOP/cycle for the two cases. Because each lane
has a FPU, the ideal throughput of Vitruvius+ equipped with eight lanes amounts to 16 DP-FLOP/cycle8. Despite the
low performance in the short-vector region, affected by the non-negligible startup time, the overlapping optimization
performs significantly better than the non-overlapping case. The low performance in the short-vector region is due in
part to the VRF accesses generated by the FSM. When the number of elements assigned to each lane is low, such as the
case of vl=16 where each lane has only 2 DP-elements, the FSM accesses only two out of the five banks of the VRF. A
smart operation scheduler may detect this case and pack the access to the VRF of the following instruction with the one
of the previous instruction, trying to optimize the usage of the resource, provided there are no bank conflicts. However,
the necessary control logic could have a non-negligible impact on area. On the contrary, the overlapping optimization
drastically increases performance in the long-vector region. Overall, this optimization gives an average speed-up of
1.7X. We also evaluated the optimizations for the execution of vector unordered reduction operations presented in
Section 4.4. In particular, we executed a micro-kernel composed of vfredsum instructions, for different vector length
values. Figure 11b compares the performance obtained by enabling both the usage of the multiple accumulators and the
tree-based execution scheme, explained in Section 4.4. It shows the decrease of the cycle count due to the optimizations.
We measured a peak reduction of 40 cycles.

6.2 Synthesis results

Vitruvius+ was synthesized for the GF22FDX technology. We selected the 8-Tracks (8T) standard cell library. In the
synthesis process, we used a clock period of 700 ps, a bit lower than the target clock corresponding to the frequency of
1.2 GHz, in order to force the synthesizer to optimize the output netlist and give some margin to the Place and Route
(PnR) tool to meet the timing constraints. We enabled the retiming feature to deal with the timing critical paths of
our design. We set the synthesizer to use both Super Low 𝑉𝑡 (SLVT) and Low 𝑉𝑡 (LVT) cells, where 𝑉𝑡 represents the
transistor threshold voltage, in order to use the fast SLVT cells in the timing critical paths of the design, while using
slower LVT cells in the parts of the design with no timing issues, contributing to power efficiency. We also enable the
clock-gating feature. In the typical corner (TT/0.80 V/25 ◦C), Vitruvius+ successfully meets the timing constraints,

8Each FMA accounts for two operations, one multiplication and one addition. Therefore, each lane has a peak throughput of 2 DP-FLOP/cycle.
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(a) Performance comparison of the instructions over-
lapping optimization.

(b) Performance improvements of the vector reduc-
tions after the optimizations.

Fig. 11. Evaluation of the overlapping and the vector unordered reductions optimizations.

reaching an estimated maximum frequency of 1.4 GHz. In the slow corner (SS/0.72 V/125 ◦C), the maximum frequency
is around 1.2 GHz, with the critical path being in the LMU, one of the memory units presented in Section 3.3. The final
synthesis report shows that 45.7% of the total cells are LVT cells and 54.3% are SLVT cells.

6.3 Physical Design

The netlist obtained from the synthesis entered the PnR phase. We tried different placements of the synthesized
netlist, and we ended up with the configuration shown in Figure 12, where the different lanes and their VRF slices
are highlighted. The floorplan fits in a 1600 × 1100 µm2 rectangle, where 20 µm on each side are left for the power
ring. Therefore, a total area of 1.7064 mm2 is left for the design. Our results show that Vitruvius+ occupies 76% of
the available area, giving a total of 1.3 mm2. Power estimation in the typical corner reported by the PnR tool shows a
maximum power of ∼920 mW. Figure 13 shows the area breakdown of Vitruvius+ and zoom-in on the area distribution

Fig. 12. Floorplan of Vitruvius+ with eight lanes.
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of the internal module of a single lane, with the percentage of area consumed by the internal blocks. As depicted,
the renaming unit, which enables the lightweight out-of-order execution in Vitruvius+, accounts for only the 2.5%
of the total area of the VPU. As for the area breakdown of the single lane, the FPU and the VRF represents the most
area-consuming components, occupying the 35.1% and the 29.8% of the total lane area, respectively. The reduction
handler and related improvements described in Section 4.4 accounts for the 6% of the lane area. Figure 14 reports the
breakdown of the maximum estimated power consumption. As shown, the impact of the renaming unit is negligible
and accounts for only the 1.63% of the total estimated power.

Fig. 13. Breakdown of the area in Vitruvius+. The area distribution of a single lane is also shown.

Fig. 14. Breakdown of the maximum power consumption in Vitruvius+.

6.4 Benchmarks

Table 4. Performance evaluation for the set of benchmarks and speed-up over Vitruvius.

Frequency: 1.4 GHz

Application FLOP/cycle Power [mW] GFLOPS/W Speed-upVitruvius Vitruvius+

Axpy 4.1 6.1 347 24.6 1.5X
MMUL 14 15.5 459 47.3 1.1X
FFT 2.5 3.1 348 12.5 1.2X

Jacobi2D 7.4 8.2 400 28.7 1.1X
Blackscholes 5 6 427 19.7 1.2X
LavaMD 6 6.6 446 20.7 1.1X
Pathfinder 2.5 3.0 365 11.5 1.2X

Streamcluster 3.9 7.1 516 19.3 1.8X

Table 4 shows performance, power, and efficiency results, as well as the speed-up over the baseline architecture,
Vitruvius, for the target benchmarks. Power data were obtained by simulating the back-annotated netlist of the whole
design on QuestaSim-64 2021.3_2. The resulting activity was processed in Cadence® Joules™ RTL Power Solution
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for each of the evaluated benchmark. Overall, Vitruvius+ scores better than Vitruvius for all the benchmarks due
to the optimizations presented in Section 4. In particular, axpy benefits from the out-of-order chaining mechanism,
as the functional unit can start processing data not strictly from the first element group, as discussed in Section 4.1.
Similarly, FFT includes indexed operations, and partially benefits from the out-of-order chaining while encountering
the bottleneck on the memory interface. FFT also has vrgather, one of the longest-latency operations in Vitruvius+.
Streamcluster is the benchmark that most benefits from the optimizations described in Section 4. In particular, both
the optimizations of vector reductions and the fast-move mechanism contribute to the considerable speed-up over the
previous design. Jacobi-2D also improves a bit after the fast-move optimization and the reconfiguration of the inter-lane
ring, with a 10% increase on the FLOP/cycle. Pathfinder reports a 1.2X speed-up due to the switched-ring capabilities.
For MMUL, we observe a light speed-up. The performance is very close to the peak, showing an efficiency of 97% of
FPU utilization.

6.5 Comparison with state of art vector units

We compare the results obtained from the evaluation of Vitruvius+ with relevant state of the art VPUs. Results are
collected in Table 5. We consider metrics of vector units in isolation as much as possible. We also believe that for a
decoupled unit such as ours, the final efficiency would depend on the type and design of the scalar core.

Table 5. Comparison with relevant state of the art vector units. The reported values come from taped-out
implementations.

RISC-V Vector Processors

Name RVV version VLEN Area Frequency Peak Efficiency
(bits) (mm2) (GHz) (GFLOPS/W)

Vitruvius+ (this work) 0.7.1 16384 1.3 1.4 47.3
[21] Hwacha Non-Standard 512 1.31a 1.0 16.7
[6] HwachaV4 Non-Standard 512 4.06a N/Ab 40+
[23] Ara 0.5 16384 0.6 1.3 46.4
[5] Xuantie910 VPU 0.7.1 256 0.2a 2.0 N/A
[2] Andes NX27V 1.0 512 N/A 1.4 N/A
[40] SiFive P270 1.0rc 256 N/A N/A N/A
[39] SiFive X280 1.0 512 N/A N/A N/A

Non-RISC-V Vector Processors

Name Vector ISA VLEN Area Frequency Peak Efficiency
(bits) (mm2) (GHz) (GFLOPS/W)

[27] SX-Aurora VE NEC Vector ISA 16384 30.22a 1.6 N/A
[28] A64FX SVE 128-2048 1.22a 1.8 26.8a

a Estimated from publicly available resources.
b Not publicly available.

6.5.1 Comparison with RISC-V vector units. Hwacha [21] is a single-lane vector unit which implements a custom vector
ISA, and was taped out with a MVL of 512 bits. The authors report a peak energy efficiency of 16.7 GFLOPS/W at
0.65 V, running at 250 MHz. Hwacha V4 [6] increases the peak energy efficiency up to 40+ GFLOPS/W. Vitruvius+
gets higher peak energy efficiency of 47.3 GFLOPS/W when running a 256x256 MMUL kernel, and also runs at higher
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frequency than the reported Hwacha implementations. Ara [23] targets long vectors with 256 DP-elements, and was
taped-out in a 4-lane configuration. This implementation reports an efficiency of 46.4 GFLOPS/W when running a
256x256 MMUL kernel. The peak energy efficiency is similar to Vitruvius+. However, Ara supports only a subset of
the RVV-0.5, and is missing the support for vector reductions and vector register grouping. Xuantie-910 [5] was taped
out with a MVL of 256 bits, way lower than the vector length supported in Vitruvius+. We did not find any other
publicly available information for a deeper analysis. While Table 5 reports ASIC implementations, there are vector
units oriented at FPGA implementation, like Arrow [4] and Vicuna [30]. Arrow implements a subset of RVV-0.9, with
no support for reductions and permutation instructions, including vector register gather and slide operations, as well
as memory indexed operations. Vitruvius+ implements all these features. Authors in [30] report a peak efficiency of
+90% for compute-bound tasks and different configuration with up to 2048 bits of MVL. Vitruvius+ reaches a peak
efficiency of +97% for compute-bound tasks like the MMUL kernel or the sequence of back-to-back FMAs as reported in
Section 6.1. Being these works FPGA-based implementations we cannot make a fair comparison in terms of area and
power efficiency.

6.5.2 Comparison with non-RISC-V vector units. We consider two of the most popular non-RISC-V vector units. A
disclaimer that by nomeans the following paragraphs are advocating Vitruvius+ is at thematurity level of the commercial
vector units. We report the following considerations as a qualitative analysis to better understand how Vitruvius+
position itself when compared to the best-in-class vector processors. Because of the lack of publicly available information
on power analysis of the NEC SX-Aurora TSUBASA VE [27], we considered performance per area for a qualitative
analysis. We retrieved information about the fabrication aspects of SX-Aurora from [36]. By removing the estimated
area due to caches from the reported area information, and by equally splitting the remaining area of the single vector
core between the scalar pipeline and the VPU, we estimated an area of 30.22 mm2 for the SX-Aurora VPU. This gives ≈
10.16 GFLOP/mm2 at 1.6 GHz(16 nm). Calculating the same metrics for Vitruvius+, we obtain 17.23 GFLOP/mm2 at
1.4 GHz, as a proof of its efficient resource utilization. We believe that Vitruvius+ would be even more efficient when
scaling to the same technology node.

For the SVE VPU of the A64FX core from Fujitsu [28] we used the results from [3]. Again, by eliminating the area
contribution due to caches, we extrapolated an area per core of 2.44 mm2. We equally distributed the calculated per-core
area among its scalar and vector pipelines. This favours the vector engine, which gets 1.22 mm2 and results in 47
GFLOPS/mm2 at 1.8 GHz(7 nm). Vitruvius+ yields a total of 17.23 GFLOPS/mm2 at 1.4 GHz(22 nm). We believe that
technology scaling from 22 nm down to 7 nm will place Vitruvius+ efficiency closer to the result of A64FX. From [3],
we could also retrieve information on power metrics. In particular, it reports that the power consumption of a core
group composed of 12 cores when running DGEMM is ≈ 26 W. This gives an estimated power per core of 2.1 W. From
[25], where the peak performance of DGEMM is revealed, we deduced a peak performance per core of around 56.2
GFLOPS, which corresponds to almost 97% of efficiency of FPU utilization. Based on this, we calculate a peak power
efficiency of 26.8 GFLOPS/W (1.8 GHz,7 nm). Based on the results of MMUL we measure in Section 6.4, for Vitruvius+
we calculate an efficiency of 97% of FPU utilization, with a peak power efficiency of 47.3 GFLOPS/W(1.4 GHz, 22 nm).

7 CONCLUSION AND FUTUREWORK

This work presented Vitruvius+, a VPU with 256-DP-element vectors targeting HPC applications. It implements RVV-
0.7.1 and adopts a hybrid in-order/out-of-order execution scheme supported by register renaming and arithmetic/memory
instruction decoupling. In its next generation, Vitruvius+ will support RVV-1.0, the latest version of RVV. We identify
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mainly two challenging features to support. The first feature is the new mask layout, which always maps bit i of
the mask register to bit i of the vector register v0, regardless of the element size and the LMUL settings. Due to the
interleaving of the vector elements shown in Figure 5, this implies the need of a mechanism to distribute accordingly
the mask bits to the vector lanes when executing predicated instructions. Another feature supported in RVV-1.0 is
what the ISA calls fractional LMUL. RVV-1.0 allows LMUL to assume fractional values, specifically 1/2, 1/4, and 1/8. The
overall effect of this feature is the reduction of the vector length within a single vector register. We believe this feature
does not have a critical impact on the current design and can be implemented with a few changes in the front-end.
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