239 research outputs found

    Clinical Significance of Optic Disc Progression by Topographic Change Analysis Maps in Glaucoma: An 8-Year Follow-Up Study

    Get PDF
    Aim. To investigate the ability of Heidelberg Retina Tomograph (HRT3) Topographic Change Analysis (TCA) map to predict the subsequent development of clinical change, in patients with glaucoma. Materials. 61 eyes of 61 patients, which, from a retrospective review were defined as stable on optic nerve head (ONH) stereophotographs and visual field (VF), were enrolled in a prospective study. Eyes were classified as TCA-stable or TCA-progressed based on the TCA map. All patients underwent HRT3, VF, and ONH stereophotography at 9–12 months intervals. Clinical glaucoma progression was determined by masked assessment of ONH stereophotographs and VF Guided Progression Analysis. Results. The median (IQR) total HRT follow-up period was 8.1 (7.3, 9.1) years, which included a median retrospective and prospective follow-up time of 3.9 (3.1, 5.0) and 4.0 (3.5, 4.7) years, respectively. In the TCA-stable eyes, VF and/or photographic progression occurred in 5/13 (38.4%) eyes compared to 11/48 (22.9%) of the TCA-progressed eyes. There was no statistically significant association between TCA progression and clinically relevant (photographic and/or VF) progression (hazard ratio, 1.18; P=0.762). The observed median time to clinical progression from enrollment was significantly shorter in the TCA-progressed group compared to the TCA-stable group (P=0.04). Conclusion. Our results indicate that the commercially available TCA progression criteria do not adequately predict subsequent photographic and/or VF progression

    γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

    Get PDF
    DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair.</p> <p>Methods</p> <p>Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors.</p> <p>Results</p> <p>We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself.</p> <p>Conclusions</p> <p>The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay.</p

    Chromatin organization revealed by nanostructure of irradiation induced gamma H2AX, 53BP1 and Rad51 foci

    Get PDF
    The spatial distribution of DSB repair factors gamma H2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and gamma H2AX form IRIF with same mean size of (540 +/- 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by gamma H2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 +/- 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 +/- 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened
    corecore