19 research outputs found

    Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development

    Get PDF
    Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases

    Leishmania tarentolae as an Antigen Delivery Platform: Dendritic Cell Maturation after Infection with a Clone Engineered to Express the SARS-CoV-2 Spike Protein

    No full text
    Background: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. Methods: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. Results: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. Conclusions: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules

    Denaturing Gradient Gel Electrophoresis Analysis of Bacteria in Italian Ticks and First Detection of Streptococcus equi in Rhipicephalus bursa from the Lazio Region

    No full text
    Tick-borne diseases are an increasing problem for the community. Ticks harbor a complex microbial population acquired while feeding on a variety of animals. Profiling the bacterial population by 16S rDNA amplification and denaturing gradient gel electrophoresis enables detection of the broad spectrum of bacteria that settles in the ticks. This study identified known and unknown tick-infecting bacteria in samples from Italy. Seven adult ticks from different hosts and origins were analyzed: two Rhipicephalus sanguineus ticks from dogs (Lombardia), two Rhipicephalus bursa ticks from bovines (Lazio), and three Ixodes ricinus ticks from humans (Marche). The major result was the first report of the zoonotic agent Streptococcus equi in ticks. S. equi is a species complex of highly contagious pathogens. Subsequent to S. equi detection in a R. bursa tick removed from a bovine of Lazio in 2012, we studied 95 R. bursa samples collected from 3 bovines, 3 ponies, and 1 sheep grazing in the same area in 2012 and from 6 ponies grazing there in 2017. The results of a specific PCR assay indicated a not sporadic occurrence of S. equi in ticks. This finding provides a basis for assessing the potential of ticks to harbor and disperse S. equi

    The mycobiota of the sand fly Phlebotomus perniciosus: involvement of yeast symbionts in uric acid metabolism

    No full text
    The knowledge of the fungal mycobiota of arthropods, including the vectors of human and animal diseases, is still limited. Here, we investigated the mycobiota associated with the sand fly Phlebotomus perniciosus, the main vector of leishmaniasis in the western Mediterranean area, by a culture-dependent approach (microbiological analyses and sequencing of the 26S rRNA gene), internal transcribed spacer (ITS) rRNA amplicon-based next-generation sequencing, fluorescence in situ hybridisation (FISH), and genome sequencing of the dominant yeast species. The dominant species was Meyerozyma guilliermondii, known for its biotechnological applications. We focused the attention on this yeast and we investigated its prevalence in adults, pupae and larvae of reared sand flies (overall prevalence: 57.5%) and of field-collected individuals (overall prevalence: 9%). Using whole-mount FISH and microscopic examination, we further showed that M. guilliermondii colonizes the midgut of females, males and larvae and the distal part of Malpighian tubules of female sand flies, suggesting a possible role in urate degradation. Finally, the sequencing and analysis of the genome of M. guilliermondii allowed to predict the complete uric acid degradation pathway, suggesting that the yeast could contribute to the removal of the excess of nitrogenous wastes after the blood meal of the insect host. This article is protected by copyright. All rights reserved

    Rectal Administration of <i>Leishmania</i> Cells Elicits a Specific, Th1-Associated IgG2a Response in Mice: New Perspectives for Mucosal Vaccination against Leishmaniasis, after the Repurposing of a Study on an Anti-Viral Vaccine Candidate

    No full text
    The mucosal immune system plays a pivotal role in the control of infections, as it represents the first line of defense against most pathogens, from respiratory viruses to intestinal parasites. Mucosal vaccination is thus regarded as a promising strategy to protect animals, including humans, from infections that are acquired by ingestion, inhalation or through the urogenital system. In addition, antigens delivered at the mucosal level can also elicit systemic immune responses. Therefore, mucosal vaccination is potentially effective also against systemic infections acquired through non-mucosal routes, for example, through the bite of hematophagous insects, as in the case of leishmaniasis, a widespread disease that affects humans and dogs. Here, we explored the potential of antigen rectal administration for the generation of anti-Leishmania immunity. Mice were immunized through rectal administration of whole cells of the model parasite Leishmania tarentolae (using a clone engineered to express the spike protein of the SARS-CoV-2 virus generated in a previous study). A specific anti-Leishmania IgG antibody response was detected. In addition, the recorded IgG2a/IgG1 ratio was higher than that of animals injected subcutaneously; therefore, suggesting a shift to a Th1-biased immune response. Considering the importance of a Th1 polarization as a protective response against Leishmania infections, we suggest that further investigation should be focused on the development of novel types of vaccines against these parasites based on rectal immunization

    Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs

    Get PDF
    Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum. To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti- L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test. Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2. Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models

    Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections

    No full text
    : Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some&nbsp;researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections

    <i>Leishmania tarentolae</i> as an Antigen Delivery Platform: Dendritic Cell Maturation after Infection with a Clone Engineered to Express the SARS-CoV-2 Spike Protein

    No full text
    Background: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. Methods: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. Results: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. Conclusions: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules

    A survey of the mycobiota associated with larvae of the black soldier fly (<i>Hermetia illucens</i>) reared for feed production

    Get PDF
    <div><p>Feed security, feed quality and issues surrounding the safety of raw materials are always of interest to all livestock farmers, feed manufacturers and competent authorities. These concerns are even more important when alternative feed ingredients, new product developments and innovative feeding trends, like insect-meals, are considered. The black soldier fly (<i>Hermetia illucens</i>) is considered a good candidate to be used as feed ingredient for aquaculture and other farm animals, mainly as an alternative protein source. Data on transfer of contaminants from different substrates to the insects, as well as the possible occurrence of toxin-producing fungi in the gut of non-processed insects are very limited. Accordingly, we investigated the impact of the substrate/diet on the intestinal mycobiota of <i>H</i>. <i>illucens</i> larvae using culture-dependent approaches (microbiological analyses, molecular identification through the typing of isolates and the sequencing of the 26S rRNA D1/D2 domain) and amplicon-based next-generation sequencing (454 pyrosequencing). We fed five groups of <i>H</i>. <i>illucens</i> larvae at the third growing stage on two substrates: chicken feed and/or vegetable waste, provided at different timings. The obtained results indicated that <i>Pichia</i> was the most abundant genus associated with the larvae fed on vegetable waste, whereas <i>Trichosporon</i>, <i>Rhodotorula</i> and <i>Geotrichum</i> were the most abundant genera in the larvae fed on chicken feed only. Differences in the fungal communities were highlighted, suggesting that the type of substrate selects diverse yeast and mold genera, in particular vegetable waste is associated with a greater diversity of fungal species compared to chicken feed only. A further confirmation of the significant influence of diet on the mycobiota is the fact that no operational taxonomic unit common to all groups of larvae was detected. Finally, the killer phenotype of isolated yeasts was tested, showing the inhibitory activity of just one species against sensitive strains, out of the 11 tested species.</p></div
    corecore