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Abstract 

Vertically-transmitted bacterial symbionts are widespread in ticks and have manifold impacts 

on the epidemiology of tick-borne diseases. For instance, they may provide essential nutrients 

to ticks, affect vector competence, induce immune responses in vertebrate hosts, or even 

evolve to become vertebrate pathogens. The deer or blacklegged tick Ixodes scapularis 

harbours the symbiont Rickettsia buchneri in its ovarian tissues. Here we show by molecular, 

proteomic and imaging methods that R. buchneri is also capable of colonising the salivary 

glands of wild I. scapularis. This finding has important implications for the diagnosis of 

rickettsial infections and for pathogen-symbiont interactions in this notorious vector of Lyme 

borreliosis. 
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1. Introduction 

The deer or blacklegged tick, Ixodes scapularis, is the most important vector of human tick-

borne pathogens in the Eastern United States, playing a primary role in the transmission of 

the agents of Lyme borreliosis, babesiosis, human granulocytic anaplasmosis and Powassan 

encephalitis. However, in contrast with several other generalist species of Ixodes worldwide, 

I. scapularis is not a vector of spotted fever-group rickettsiae. Instead, I. scapularis harbours 

a rickettsial symbiont that is positioned in a clade distinct from the traditional spotted fever, 

typhus, ancestral and transitional groups, which were believed to encompass most rickettsial 

diversity until recently (Pilgrim et al., 2017). This “rickettsial endosymbiont of I. scapularis” or 

REIS (also known as “Rickettsia genotype Cooleyi”) has been recognised for over two decades 

from microscopic and molecular studies and has never been associated with disease in 

vertebrates (Gillespie et al., 2012; Noda et al., 1997). Following screening of different lifecycle 

stages and individual organs from adult ticks from a laboratory colony, the symbiont was 

reported to be restricted to the ovaries of its host (Munderloh et al., 2005; Noda et al., 1997). 

However, very high-prevalence infections in the wild - including in adult males (Hagen et al., 

2018; Moreno et al., 2006) - indicate that the symbiont must infect non-ovarian tissues, at 

least in certain populations. In 2012, the genome of REIS was published and shown to be 

significantly larger (>2 Mb) than that of pathogenic rickettsiae (Gillespie et al., 2012). It was 

also supplemented by an accessory genome consisting of four plasmids, one of which encodes 

complete operons for biotin biosynthesis (Gillespie et al., 2012). Subsequently, following 

isolation from I. scapularis ovaries and maintenance in a tick cell line, REIS was formally 

described as Rickettsia buchneri (Kurtti et al., 2015). 

Several genera of bacteria (e.g., Rickettsia, Coxiella, Francisella, Midichloria and Rickettsiella) 

are stably associated with different species of ticks, persisting through transstadial transfer 
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to be transmitted transovarially (Duron et al., 2017). These symbionts may remain strictly 

restricted to the arthropod host or can be transmitted to the ticks’ vertebrate host, 

sometimes causing disease (Angelakis et al., 2016; Duron et al., 2017). A prerequisite for 

horizontal transmission of a symbiont to the vertebrate host (and potentially between ticks 

feeding on the same host) is colonisation of the tick’s salivary glands. This process does not 

necessarily imply a transition to pathogenicity, being simply a transmission route to other 

ticks via co-feeding; nevertheless, a symbiont residing in this location will be exposed to the 

vertebrate host’s immune system, typically leading to an antibody response. Moreover, the 

symbiont may interact with protozoal, bacterial and viral pathogens in the salivary glands, 

perhaps facilitating or impeding their transmission. Here, we demonstrate using a 

combination of molecular, proteomic and imaging methods that contrary to prior reports, R. 

buchneri colonises the salivary glands of I. scapularis. 

2. Methods 

Adult Ixodes scapularis ticks were collected from white-tailed deer (Odocoileus virginianus) 

by arrangement with the New Hampshire Fish and Game Department. Field scientists from 

this organisation removed ticks using fine forceps from deer shot by hunters within a 5-mile 

radius of a weigh station located near Manchester, NH. The specimens were frozen at -20°C 

and sent to New England Biolabs, where they were sorted based on degree of engorgement. 

Partially-fed ticks, estimated to have been attached to the host for 3 - 4 days (TickEncounter, 

2018), were transferred into 70% ethanol and shipped to the University of Milan for 

dissection. Ticks were inspected thoroughly under a dissecting microscope to ensure they 

were not damaged. During and after the dissection, organs were checked microscopically for 

integrity and cross-contamination, and only intact tissues were kept for downstream 
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processing. Ten ovaries (OV) and 10 salivary gland pairs (SG) from individual ticks were pooled 

and preserved in ethanol. For proteomic analysis, the samples were lysed in 1% (w/v) sodium 

deoxycholate (Sigma) in 50 mM ammonium bicarbonate followed by three cycles of 

sonication on ice (Vibra-cell 130PB sonicator, 20 Hz, with microprobe; 10 s sonication 

alternating with 30 s incubation on ice). The samples were centrifuged at 13,000 × g for 10 

min at 4°C to remove insoluble material and the pellets were used for DNA extraction in a 

Qiagen Blood and Tissue DNeasy kit according to the manufacturer’s protocol. Soluble protein 

concentrations were measured using the Pierce Coomassie Plus (Bradford) protein assay (Bio-

Rad, Hercules, CA, USA). 

For geLC-MS, proteins were separated under denaturing conditions using 4 - 12% NuPAGE 

Bis-Tris protein gels (Invitrogen). Approximately 30 μg of the pooled OV and SG lysates were 

loaded onto the gel, and electrophoresis was conducted at 200 V (constant) for 35 min. The 

gel was stained overnight with GelCode Blue Stain Reagent (ThermoFisher Scientific). The 

entire gel lane was excised into seven equal slices (~1 mm wide), which were then cut into 

smaller pieces (~1 mm3). Gel pieces were destained in 50% acetonitrile/50 mM ammonium 

bicarbonate (pH ~8), reduced for 30 min at 37°C with 10 mM dithiothreitol (Sigma) in 50 mM 

ammonium bicarbonate, and alkylated with 55 mM iodoacetamide (Sigma) in 50 mM 

ammonium bicarbonate for 30 min in the dark at room temperature. Gel pieces were washed 

for 15 min in 50 mM ammonium bicarbonate and dehydrated with absolute acetonitrile. 

Acetonitrile was removed, and the gel plugs rehydrated with 0.01 μg/μL proteomic grade 

trypsin (Sigma) in 50 mM ammonium bicarbonate. Digestion was performed overnight at 

37°C. Peptides were extracted from the gel plugs using successive 15 min incubations in 3% 

(v/v) acetonitrile in 0.1% (v/v) trifluoroacetic acid. Peptide extracts were pooled and reduced 
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to dryness using a centrifugal evaporator (Eppendorf Concentrator Plus), then re-suspended 

in 3% (v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid for analysis by mass spectrometry (MS). 

Peptides were analysed by liquid chromatography-MS/MS using a Q-Exactive mass 

spectrometer platform (Thermo Fisher Scientific). Each Thermo RAW file was imported into 

Progenesis QI (version 4.1, Nonlinear Dynamics) individually. Peak picking, instrument and 

Mascot parameters were as described elsewhere (Dong et al., 2018). Tandem MS data were 

searched against a combined database from I. scapularis (Uniprot, June 2017) and REIS (NCBI 

BioProject PRJNA33979); a total of 22,584 combined sequences and 6,279,968 residues. 

Separate sample fractions were combined using Progenesis QI to create one output file. 

Quantitative analysis for proteins detected in both ovaries OV and SG was performed in 

Progenesis QI for proteomics. Protein intensity values were used to create heat-maps using 

the Morpheus online tool (Morpheus, https://software.broadinstitute.org/morpheus). 

Both conventional PCR and qPCR (TaqMan assay) targeting the Rickettsia spp. gltA gene 

(Stenos et al., 2005) were used on the OV and SG tissue extracts (one pool from 10 ticks per 

tissue). Starting copy numbers were quantified by linear regression in Opticon Monitor 

software v. 3.1. (Bio-Rad), using a dilution series of a synthetic standard (Eurofins Genomics) 

representing the 74-bp gltA amplicon. Normalisation of the qPCR against a tick single-copy 

nuclear gene, ribosomal protein L6 (rpl6), was done as described previously (Al-Khafaji et al., 

2019). The conventional PCR used a previously published primer set and protocol (Roux et al., 

1997), and PCR products from SG and OV were purified using a QIAquick PCR purification kit 

(Qiagen, Germany) according to the manufacturer’s instructions. Sequences were obtained 

by the Sanger method from Eurofins MWG Operon (Ebersberg, Germany), identified using 

BLAST (www.ncbi.nlm.nih.gov/BLAST), and compared with the reference gene gltA sequence 
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(WP_014409697.1; R. buchneri strain ISO7 contig076, whole genome shotgun sequence) 

available in GenBank. ClustalW was used for DNA sequence alignments. 

Additional, partially-fed specimens of I. scapularis were collected live by co-authors CKSC and 

ZL from culled white-tailed deer in New Hampshire for fluorescence in-situ hybridisation. Ticks 

were kept at 4°C during transportation to the laboratory in Massachusetts and confirmed to 

be viable prior to dissection. The SG tissues were fixed in 4% paraformaldehyde in PBS for 1 

hr at room temperature, washed once, and transferred into 50% ethanol in PBS. The fixed SG 

were stored at -20°C prior to refrigerated shipment to the University of Milan. After thorough 

washing three times (5 min) with PBS-Tween 20 buffer [137 mM sodium chloride, 8.1 mM 

disodium phosphate, 2.7 mM potassium chloride, 1.5 mM monopotassium phosphate (pH 

7.4), 0.2% Tween 20], the salivary glands were incubated with hybridization buffer [20 mM 

Tris-hydrochloride (pH 8.0), 0.9 M sodium chloride, 0.01% sodium dodecyl sulfate, 30% 

formamide] three times for 5 min at 42˚C. Then, the samples were hybridized with 

hybridization buffer containing the probes (100 nM each) at 42˚C overnight. A Cy3-labeled 

Rickettsia_B1-specific probe (5′-CCATCATCCCCTACTACA-3′) specific for the genus Rickettsia 

(Perotti et al., 2006) and the Cy5-labeled probe EUB338 (5′-GCTGCCTCCCGTAGGAGT-3′), 

routinely used as a universal bacterial probe (Amann et al., 1990) were used in parallel. A non-

Rickettsia_B1 probe, complementary to the Rickettsia_B1 probe, was used as a control. After 

thorough washing with PBS-Tween 20 (20 min), 75 ng/ml of DAPI was added for nuclear 

staining and incubated for 20 min at room temperature. The treated samples were mounted 

on slides with buffered glycerol containing 4% n-propyl gallate. The slides were observed 

using a laser-scanning Nikon A1R confocal microscope. 

3. Results and Discussion 
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The qPCR assay detected R. buchneri DNA in both OV and SG of I. scapularis (Fig. 1). However, 

the bacterial density was approximately eleven-fold higher in OV (bacterial:tick genome ratio 

of 6.04 in OV and 0.55 in SG). Conventional PCR followed by Sanger sequencing detected gltA 

DNA that was 100% identical to that of R. buchneri in both tissues (alignment of 686 bp for 

OV and 530 bp for SG). Moreover, geLC-MS demonstrated the presence of R. buchneri 

proteins in both OV and SG. A comparison of expression levels of 29 proteins (high-confidence 

hits with ≥2 unique peptides) between the two tissues showed that most proteins could only 

be detected in OV; however, two chaperonins, heat-shock protein 20, and peptidoglycan-

associated lipoprotein were robustly detected in SG (Fig. 2). Interestingly, several proteins 

encoded by the plasmids of R. buchneri, including a biotin synthase expressed in OV, were 

detected by the geLC-MS analysis (Fig. 2). 

Of the six tick SG specimens examined, two showed clear evidence of rickettsial infection in 

the lumen by confocal microscopy. One specimen exhibited particularly extensive 

colonisation of the SG, with distinct clusters of bacteria accumulating in the cytoplasm of the 

acinar cells (Fig. 3). 

Taken together, the evidence presented here demonstrates that R. buchneri can colonise the 

SG of I. scapularis. The most important implication of this finding is that vertebrate hosts of I. 

scapularis, including humans, could be exposed to R. buchneri antigens and possibly intact 

(potentially viable) bacteria. This raises interesting parallels with Candidatus (Ca.) Midichloria 

mitochondrii, the primary symbiont of Ixodes ricinus in Western Europe, which induces 

antibody responses in humans (Mariconti et al., 2012). Moreover, circulating symbiont DNA 

has been detected in the blood of various non-human hosts parasitized by I. ricinus (Bazzocchi 

et al., 2013), and phylogenetic analyses strongly suggest that horizontal transmission of Ca. 
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M. mitochondrii does occur at significant frequencies (Al-Khafaji et al., 2019; Buysse and 

Duron, 2018; Cafiso et al., 2016). Although this symbiont is not known to cause disease in 

vertebrates, there is interest in using the immune response against Ca. M. mitochondrii as a 

biomarker of tick bite in humans (Mariconti et al., 2012). If R. buchneri also generates 

antibody responses in humans, there is the potential for cross-reactivity in the serological 

tests used to diagnose the spotted-fever group infections transmitted by other ticks. This 

possibility deserves further attention, as immune responses to a symbiotic Rickettsia spp. 

could lead to unnecessary or inappropriate treatment of individuals being investigated for 

tick-borne diseases. Similar questions have arisen regarding the Q-fever agent, Coxiella 

burnetii, and Coxiella-like symbionts in ticks, which can also infect the SG of their hosts 

(Buysse et al., 2019; Duron et al., 2015; Klyachko et al., 2007). 

It is unclear why prior studies have not reported the detection of R. buchneri in I. scapularis 

SG. However, very few tissue-specific analyses of R. buchneri distribution have been 

performed and the only published data are from laboratory colonies of I. scapularis (Noda et 

al., 1997), or from field-collected ticks that were subsequently reared in the laboratory 

(Munderloh et al., 2005). Moreover, most prior studies appear to have focused exclusively on 

unfed specimens. Considering our findings and previous observations in toto, it appears that 

the act of blood feeding may stimulate R. buchneri colonisation of the SG and/or this process 

of colonisation is not stimulated (or is somehow impeded) under laboratory conditions. 

Notably, a recent molecular study of R. buchneri using fed tick specimens collected by 

veterinary clinics reported a prevalence of 94% in adult females and 76% in males (Hagen et 

al., 2018). The highly sensitive digital-droplet PCR method applied in that study revealed a 

2.2-fold greater symbiont density in females compared with males, which might reflect the 

presence of the bacteria in male SG (perhaps the only location colonised in this sex) versus 
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female OV and SG. It is also possible that R. buchneri exhibits similar behaviour to other 

symbionts, such as Ca. M. mitochondrii, in undergoing a “bloom” during tick engorgement 

(Sassera et al., 2008). Intriguingly, it was reported in the early 1990s that ~10% of field-

collected I. scapularis harbour Rickettsia-like organisms in their haemocytes (Magnarelli et 

al., 1991). If these organisms were R. buchneri, the infection of haemocytes would provide a 

potential route for colonisation of the SG, as has been reported for Anaplasma 

phagocytophilum (Liu et al., 2011). However, release of R. buchneri cells from the OV that are 

then scavenged by haemocytes, leading to contamination of other tissues with symbiont 

products, cannot be discounted at this stage. 

Rickettsia buchneri and its counterpart in Dermacentor spp. ticks, Rickettsia peacockii, exhibit 

gene inactivation (pseudogenisation) of various virulence determinants, such as variable 

outer membrane proteins, actin-based motility and some aspects of LPS biosynthesis 

(Gillespie et al., 2012). However, unlike many conventional bacterial pathogens, the 

pathogenicity of rickettsiae is a consequence of extensive genome reduction rather than the 

acquisition of virulence factors (Diop et al., 2019). Thus, it is possible that these symbionts 

may evolve the capacity to infect and induce disease in vertebrates, as has been 

demonstrated for Coxiella-like symbionts, in which rare cases of human illness caused by 

these normally tick-restricted organisms may mirror the emergence of the Q-fever agent, 

Coxiella burnetii (Angelakis et al., 2016). Indeed, recent studies across the gamut of vertically-

transmitted tick symbionts support a paradigm in which dynamic shifts between arthropod-

restricted symbiont and vertebrate pathogen oscillate back-and-forth within bacterial genera. 

In common with the symbionts of other obligate haematophagous arthropods, it is now 

apparent that a major role for tick symbionts is to provision B vitamins that are deficient in 
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an exclusively sanguineous diet. For instance, in the soft tick Ornithodoros moubata, removal 

of a Francisella-like symbiont via antibiotic treatments leads to inhibition of moulting and 

death, which can be rescued by artificial B-vitamin supplementation (Duron et al., 2018). A 

similar role is suspected for Coxiella-like symbionts in Rhipicephalus spp. ticks (Gottlieb et al., 

2015; Guizzo et al., 2017; Smith et al., 2015), and the presence of laterally-transferred biotin 

operons on a R. buchneri plasmid is suggestive of vitamin provisioning, as this pathway is 

entirely absent in spotted fever-group rickettsiae (Gillespie et al., 2012). This symbiont is also 

capable of de novo folate biosynthesis in common with many other Rickettsia spp. (Hunter et 

al., 2015). To the best of our knowledge, the proteomic detection of R. buchneri biotin 

synthase in I. scapularis OV is the first evidence that the biotin biosynthesis pathway is 

expressed in situ. 

In conclusion, the colonisation of I. scapularis SG by its symbiont R. buchneri reported here is 

a finding with several ramifications for the diagnoses of tick-borne diseases and the 

emergence of new tick-borne pathogens. In addition, the localisation of R. buchneri in the tick 

SG indicates the potential for competitive interactions between the symbiont and tick-borne 

pathogens, as has been demonstrated previously for Rickettsia spp. in the ovaries of 

Dermacentor andersoni (Macaluso et al., 2002) and between Borrelia burgdorferi sensu 

stricto and the gut microbiota of I. scapularis (Narasimhan et al., 2014). Indeed, the incidence 

of co-infection between R. buchneri and B. burgdorferi in wild male I. scapularis has been 

reported to be lower than expected by chance (Steiner et al., 2008), an observation that 

deserves further research in light of our findings. 
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Figure legends 

Fig. 1. Detection of R. buchneri gltA in pooled salivary glands and ovaries of I. scapularis. A. 

Quantification of rickettsial gltA from SG (red stars) and OG (purple stars) in comparison with 

a standard curve of synthetic gltA amplicons (black circles). Samples were assayed in duplicate 

without dilution. B. Quantification of I. scapularis rpl6 (for normalisation of rickettsial load) 

from SG (red stars) and OG (purple stars) in comparison with a standard curve of synthetic 

rpl6 amplicons (black circles). Samples were assayed singly, both undiluted and at a 1/10 

dilution (indicated on figure). Ct, cycle threshold. 

Fig. 2. Heatmap representing relative intensity values for 29 R. buchneri proteins between 

salivary glands and ovaries of I. scapularis. Proteins shown were identified by 2 unique 

peptides and if encoded by a plasmid, this is indicated in parentheses.  

Fig. 3. Fluorescence in situ hybridization of R. buchneri in I. scapularis salivary glands. A) 

Image obtained from light transmission. B) Overlay image of green signal from the 

Rickettsia_B1 probe and red signal from the EUB338 universal bacterial probe. Arrows 

indicate clusters of Rickettsia bacteria. C) Higher magnification (40 objective) image of 

overlay obtained with the Rickettsia_B1 (green) and EUB338 (red) probes. D) Salivary glands 

stained with non-Rickettsia_B1 probe (negative control) and EUB338 universal probe (red). 

Blue represents the nuclear counterstain (DAPI). 
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