160 research outputs found

    Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Get PDF
    This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially ?-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating ?-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for ß-thalassemia.<br/

    A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs

    Get PDF
    Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the 'off-label' use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial

    Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (<it>Citrus bergamia </it>Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology.</p> <p>Methods</p> <p>The extracts were chemically characterized by <sup>1</sup>H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR.</p> <p>Results</p> <p>The extracts obtained from bergamot (<it>Citrus bergamia </it>Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated <it>Pseudomonas aeruginosa</it>.</p> <p>Conclusions</p> <p>These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.</p

    Combined Treatment of Cancer Cells Using Allyl Palladium Complexes Bearing Purine-Based NHC Ligands and Molecules Targeting MicroRNAs miR-221-3p and miR-222-3p: Synergistic Effects on Apoptosis

    Get PDF
    Combined treatments employing lower concentrations of different drugs are used and studied to develop new and more effective anticancer therapeutic approaches. The combination therapy could be of great interest in the controlling of cancer. Regarding this, our research group has recently shown that peptide nucleic acids (PNAs) that target miR-221 are very effective and functional in inducing apoptosis of many tumor cells, including glioblastoma and colon cancer cells. Moreover, in a recent paper, we described a series of new palladium allyl complexes showing a strong antiproliferative activity on different tumor cell lines. The present study was aimed to analyze and validate the biological effects of the most active compounds tested, in combination with antagomiRNA molecules targeting two miRNAs, miR-221-3p and miR-222-3p. The obtained results show that a “combination therapy”, produced by combining the antagomiRNAs targeting miR-221-3p, miR-222-3p and the palladium allyl complex 4d, is very effective in inducing apoptosis, supporting the concept that the combination treatment of cancer cells with antagomiRNAs targeting a specific upregulated oncomiRNAs (in this study miR-221-3p and miR-222-3p) and metal-based compounds represents a promising therapeutic strategy to increase the efficacy of the antitumor protocol, reducing side effects at the same time

    Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences

    Get PDF
    Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements

    Synthesis and evaluation of antioxidant and antiproliferative activity of 2-arylbenzimidazoles

    Get PDF
    Three series of arylbenzimidazole derivatives 3-40, 45 have been simply synthesized and tested for their antioxidant capacity. The 2-arylbenzimidazoles were tested against various radicals by the DPPH, FRAP and ORAC tests and showed different activity profiles. It has been observed that the number and position of the hydroxy groups on the 2-aryl portion and the presence of a diethylamino group or a 2-styryl group are related to a good antioxidant capacity. Furthermore, benzimidazoles showed satisfactory SPF values ​​in vitro compared to the commercial PBSA filter, proving to have a good photoprotective profile. In particular, 2-arylbenzimidazole-5-sulphonic acids 15 and 38, the 2-styryl-benzimidazole 45 showed broad spectrum solar protection against UVA and UVB rays. The antiproliferative effect of the benzimidazoles was tested on human skin melanoma Colo-38 cells. The styrylbenzimidazole 45 exhibited antiproliferative effect at low micromolar concentration against Colo-38 cells and very low antiproliferative activity on normal HaCat keratinocyte cells

    Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor NF-kappaB is a very interesting target molecule for the design on anti-tumor, anti-inflammatory and pro-apoptotic drugs. However, the application of the widely-used molecular docking computational method for the virtual screening of chemical libraries on NF-kappaB is not yet reported in literature. Docking studies on a dataset of 27 molecules from extracts of two different medicinal plants to NF-kappaB-p50 were performed with the purpose of developing a docking protocol fit for the target under study.</p> <p>Results</p> <p>We enhanced the simple docking procedure by means of a sort of combined target- and ligand-based drug design approach. Advantages of this combination strategy, based on a similarity parameter for the identification of weak binding chemical entities, are illustrated in this work with the discovery of a new lead compound for NF-kappaB. Further biochemical analyses based on EMSA were performed and biological effects were tested on the compound exhibiting the best docking score. All experimental analysis were in fairly good agreement with molecular modeling findings.</p> <p>Conclusion</p> <p>The results obtained sustain the concept that the docking performance is predictive of a biochemical activity. In this respect, this paper represents the first example of successfully individuation through molecular docking simulations of a promising lead compound for the inhibition of NF-kappaB-p50 biological activity and modulation of the expression of the NF-kB regulated IL8 gene.</p

    A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3'UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells

    Get PDF
    Peptide nucleic acids (PNAs) have been demonstrated to be very useful tools for gene regulation at different levels and with different mechanisms of action. In the last few years the use of PNAs for targeting microRNAs (anti-miRNA PNAs) has provided impressive advancements. In particular, targeting of microRNAs involved in the repression of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis (CF), is a key step in the development of new types of treatment protocols. In addition to the anti-miRNA therapeutic strategy, inhibition of miRNA functions can be reached by masking the miRNA binding sites present within the 3'UTR region of the target mRNAs. The objective of this study was to design a PNA masking the binding site of the microRNA miR-145-5p present within the 3'UTR of the CFTR mRNA and to determine its activity in inhibiting miR-145-5p function, with particular focus on the expression of both CFTR mRNA and CFTR protein in Calu-3 cells. The results obtained support the concept that the PNA masking the miR-145-5p binding site of the CFTR mRNA is able to interfere with miR-145-5p biological functions, leading to both an increase of CFTR mRNA and CFTR protein content

    An Aγ-globin G->A gene polymorphism associated with β(0)39 thalassemia globin gene and high fetal hemoglobin production

    Get PDF
    Increase of the expression of γ-globin gene and high production of fetal hemoglobin (HbF) in β-thalassemia patients is widely accepted as associated with a milder or even asymptomatic disease. The search for HbF-associated polymorphisms (such as the XmnI, BCL11A and MYB polymorphisms) has recently gained great attention, in order to stratify β-thalassemia patients with respect to expectancy of the first transfusion, need for annual intake of blood, response to HbF inducers (the most studied of which is hydroxyurea)
    corecore