49 research outputs found

    Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss

    Get PDF
    AbstractMarrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention

    Senescence and cancer : a review of clinical implications of senescence and senotherapies

    Get PDF
    Cellular senescence is a key component of human aging that can be induced by a range of stimuli, including DNA damage, cellular stress, telomere shortening, and the activation of oncogenes. Senescence is generally regarded as a tumour suppressive process, both by preventing cancer cell proliferation and suppressing malignant progression from pre-malignant to malignant disease. It may also be a key effector mechanism of many types of anticancer therapies, such as chemotherapy, radiotherapy, and endocrine therapies, both directly and via bioactive molecules released by senescent cells that may stimulate an immune response. However, senescence may contribute to reduced patient resilience to cancer therapies and may provide a pathway for disease recurrence after cancer therapy. A new group of drugs, senotherapies, (drugs which interact with senescent cells to interfere with their pro-aging impacts by either selectively destroying senescent cells (senolytic drugs) or inhibiting their function (senostatic drugs)) are under active investigation to determine whether they can enhance the efficacy of cancer therapies and improve resilience to cancer treatments. Senolytic drugs include quercetin, navitoclax, and fisetin and preclinical and early phase clinical data are emerging of their potential role in cancer treatments, although none are yet in routine use clinically. This article provides a review of these issues

    Zoledronate extends healthspan and survival via the mevalonate pathway in a FOXO-dependent manner

    Get PDF
    Over recent decades, increased longevity has not been paralleled by extended healthspan, resulting in more years spent with multiple diseases in older age. As such, interventions to improve healthspan are urgently required. Zoledronate is a nitrogen containing bisphosphonate, which inhibits the farnesyl pyrophosphate synthase (FPPS) enzyme, central to the mevalonate pathway. It is already used clinically to prevent fractures in osteoporotic patients, who have been reported to derive unexpected and unexplained survival benefits. Using Drosophila as a model we determined the effects of Zoledronate on lifespan, parameters of healthspan (climbing ability and intestinal dysplasia) and the ability to confer resistance to oxidative stress using a combination of genetically manipulated Drosophila strains and Western blotting. Our study shows that Zoledronate extended lifespan, improved climbing activity and reduced intestinal epithelial dysplasia and permeability with age. Mechanistic studies showed that Zoledronate conferred resistance to oxidative stress and reduced accumulation of X-ray-induced DNA damage via inhibition of FPPS. Moreover, Zoledronate was associated with inhibition of pAKT in the mTOR pathway downstream of the mevalonate pathway and required dFOXO for its action, both molecules associated with increased longevity. Taken together, our work indicates that Zoledronate, a drug already widely used to prevent osteoporosis and dosed only once a year, modulates important mechanisms of ageing. Its repurposing holds great promise as a treatment to improve healthspan

    miR-24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging

    Get PDF
    Satellite cell-dependent skeletal muscle regeneration declines during aging. Disruptions within the satellite cells and their niche, together with alterations in the myofibrillar environment, contribute to age-related dysfunction and defective muscle regeneration. In this study, we demonstrated an age-related decline in satellite cell viability and myogenic potential and an increase in ROS and cellular senescence. We detected a transient upregulation of miR-24 in regenerating muscle from adult mice and downregulation of miR-24 during muscle regeneration in old mice. FACS-sorted satellite cells were characterized by decreased levels of miR-24 and a concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we demonstrated that miR-24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in Prdx6 levels following changes in miR-24 expression indicate miR-24 plays a role in fine-tuning Prdx6 expression. Changes in miR-24 and Prdx6 levels were associated with altered mitochondrial ROS generation, increase in the DNA damage marker: phosphorylated-H2Ax and changes in viability, senescence, and myogenic potential of myogenic progenitors from mice and humans. The effects of miR-24 were more pronounced in myogenic progenitors from old mice, suggesting a context-dependent role of miR-24 in these cells, with miR-24 downregulation likely a part of a compensatory response to declining satellite cell function during aging. We propose that downregulation of miR-24 and subsequent upregulation of Prdx6 in muscle of old mice following injury are an adaptive response to aging, to maintain satellite cell viability and myogenic potential through regulation of mitochondrial ROS and DNA damage pathways

    Does age matter? The impact of rodent age on study outcomes

    Get PDF
    Rodent models produce data which underpin biomedical research and non-clinical drug trials, but translation from rodents into successful clinical outcomes is often lacking. There is a growing body of evidence showing that improving experimental design is key to improving the predictive nature of rodent studies and reducing the number of animals used in research. Age, one important factor in experimental design, is often poorly reported and can be overlooked. The authors conducted a survey to assess the age used for a range of models, and the reasoning for age choice. From 297 respondents providing 611 responses, researchers reported using rodents most often in the 6–20 week age range regardless of the biology being studied. The age referred to as ‘adult’ by respondents varied between six and 20 weeks. Practical reasons for the choice of rodent age were frequently given, with increased cost associated with using older animals and maintenance of historical data comparability being two important limiting factors. These results highlight that choice of age is inconsistent across the research community and often not based on the development or cellular ageing of the system being studied. This could potentially result in decreased scientific validity and increased experimental variability. In some cases the use of older animals may be beneficial. Increased scientific rigour in the choice of the age of rodent may increase the translation of rodent models to humans

    Building for the future: essential infrastructure for rodent ageing studies

    Get PDF
    When planning ageing research using rodent models, the logistics of supply, long term housing and infrastructure provision are important factors to take into consideration. These issues need to be prioritised to ensure they meet the requirements of experiments which potentially will not be completed for several years. Although these issues are not unique to this discipline, the longevity of experiments and indeed the animals, requires a high level of consistency and sustainability to be maintained throughout lengthy periods of time. Moreover, the need to access aged stock or material for more immediate experiments poses many issues for the completion of pilot studies and/or short term intervention studies on older models. In this article, we highlight the increasing demand for ageing research, the resources and infrastructure involved, and the need for large-scale collaborative programmes to advance studies in both a timely and a cost-effective way

    Evaluation of in-vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach.

    Get PDF
    In vivo micro-computed tomography (”CT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo ”CT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo ”CT scanner using a nominal isotropic image voxel size (10.4 ”m) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 ”m and 9.58 ± 1.70 ”m, respectively. This study indicated that there were inevitable errors associated with the in vivo ”CT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo ”CT

    Modelling ageing and age-related disease

    Get PDF
    An increased lifespan comes with an associated increase in disease incidence, and is the major risk factor for age-related diseases. To face this societal challenge search for new treatments has intensified requiring good preclinical models, whose complexity and accuracy is increasing. However, the influence of ageing is often overlooked. Furthermore, phenotypic assessment of ageing models is in need of standardisation to enable the accurate evaluation of pre-clinical intervention studies in line with clinical translation
    corecore