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13th July 2021 
 

Dear Prof Antebi, 
 
 Thank you for the initial assessment of our manuscript (ACE-21-0072) and the 

reviewer comments sent on the 6th of April. Clarification of the role of Prdx6 in satellite cells 

ageing in addition to its characterisation as miR-24 target gene was requested. We have now 

repeated all the experiments performed in the first version of this manuscript using miR-24 

mimic and inhibitor with the addition of another condition: cell transfected with Prdx6 siRNA. 

Several key reagents, such as miR-24 inhibitor or Prdx6 siRNA have been discontinued 

(indicated in supplementary data) since we collected original data, therefore we decided to 

repeat all experiments. We have included additional analyses of mitochondrial ROS, 

mitochondrial morphology, DNA damage and additional assays of senescence. 

The results obtained confirm our previous findings that both treatment with miR-24 mimic and 

downregulation of Prdx6 using siRNA resulted in reduced viability, decreased myogenic 

potential and increased senescence during aging. In summary, our results identify a role for 

miR-24-3p through inhibition of Prdx6 in satellite cells during aging which may play a key role 

in early stages of skeletal muscle regeneration after acute injury, through controlling adaptive 

redox, apoptotic and senescence signalling pathways. Moreover, our findings show that miR-

24 and Prdx6 regulation of myogenic progenitor phenotype is more pronounced in cells from 

old mice, likely due to miR-24 regulation of additional to Prdx6 target genes, such as p21. 

Considering the number of additional experiments that were performed we propose joint first 
name authorship to the first two authors (Soriano-Arroquia and Gostage). We also had 
significant input for a number of experiments from PhD candidate Qin Xia and believe their 
contribution warrants authorship on the manuscript. We believe the additional experiments 
and overall editing have significantly improved the manuscript and it could now be re-
considered for publication in Aging Cell.  
  
            We hope you will find the revised article appropriate for publication in Aging Cell and 
look forward to your reply.  
 
Yours sincerely, 
 

 
 

Dr Katarzyna Goljanek-Whysall 

Senior Lecturer in Physiology 

School of Medicine 

NUI Galway 

Ireland 

Dr Katarzyna Goljanek-Whysall 
Discipline of Physiology 
School of Medicine 
NUI Galway, Ireland 
 
Tel: +353 91494299 
kasia.whysall@nuigalway.ie 
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ACE-21-0072 miR-24:Prdx6 interactions regulate oxidative stress and viability of myogenic 
progenitors during aging

Response to reviewer comments

Editor comments:
As you can read below, the reviewers and supervising editor were interested in the possible 
functional interaction of mir-24/prd6, but felt that that several points about this interaction with 
respect to aging needed clarification,  as well as the relationship to ROS. Furthermore, the statistical 
analysis needs to be addressed.
The review of your manuscript is complete, and the reviewers found the manuscript of interest, 
relevant for Aging Cell and will appeal to a wide readership.  The reviewers ask for revisions of the 
manuscript requiring more details regarding the use of t-tests for statistical significance, resolution of 
apparent inconsistencies among experiments, particularly with regard to the effects of miR24 
antagomiRs and miR24 in aged and young mice.

We would like to thank the reviewers and the editors insightful comments and an opportunity to 
improve this manuscript. We have addressed all the comments – please see below.

The reviewers and editor requested clarification of the role of Prdx6 in satellite cells ageing in 
addition to its characterisation as miR-24 target gene. We have now repeated all the experiments 
performed in the first version of this manuscript using miR-24 mimic and inhibitor with the addition 
of another condition: cell transfected with Prdx6 siRNA. Several key reagents, such as miR-24 
inhibitor or Prdx6 siRNA have been discontinued (indicated in supplementary data) since we 
collected original data, therefore we decided to repeat all experiments. 

All statistical analyses have been performed on raw values; T test have only been used for pairwise 
comparison if data was deemed normally distributed, otherwise Mann Whitney test was used. For 
multiple comparisons, we used One Way A.N.O.V.A followed by Tukey’s multiple comparison or 
Kruskal Wallis test followed by Dunn’s multiple comparison, as indicated in the figures. 

We are happy to note that between the two different experimental settings and two sets of 
different reagents: miR-24, AM24 and siPrdx6, all data is consistent in terms of the phenotype 
elucidated by miR-24 and Prdx6. We included original data in the supplementary figures for the 
purpose of transparency and further support of the conclusions. 

We believe the differences in the senescence phenotype between adult and old cells in the original 
data may results from a wide range of ages of mice used for myogenic progenitor isolation, e.g. cells 
from adult mice were isolated from mice 1-8 months old and cells from old mice were isolated from 
mice aged 20-24 months old. These ages are associated with dynamic changes in muscle, therefore 
we isolated myogenic progenitors from mice aged 6 (adult) or 24 (old) months old mice for the 
experiments contained within the revised manuscript. 
The phenotype presented in the revised manuscript is consistent between adult and old cells with 
miR-24 having a more pronounced effects in cells from old mice; this is not entirely surprising as 
miR-24 has been previously shown to regulate senescence- and cell cycle associated genes which are 
dysregulated during ageing (please see page 9, discussion). Moreover, our data presented in the 
revised manuscript clearly demonstrate that downregulation of miR-24 target gene, Prdx6, is 
associated with disrupted mitochondrial morphology, increased mitochondrial ROS generation, 
increase in the levels of DNA damage marker: phosphorylated H2AX and consequently decreased 
cell viability, myogenic potential and increased senescence. In addition to determining the role of 
Prdx6 in satellite cells during ageing, we propose a mechanism by which miR-24 and Prdx6 changing 
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levels regulate ROS homeostasis and cell viability, senescence and myogenic potential during ageing. 
Please see below for the detailed response to the reviewer comments.

In addition, both reviewers ask for clarification and additional experiments solidifying the data 
regarding ROS and the regulation of ROS by miR24 and Prdx6. The supervising editor agrees with the 
reviewers’ assessments and believes that additional data supporting a role for Prdx6 in regulating 
senescence would support the conclusions as no effects of Prdx6 manipulation on satellite cell 
senescence were provided.

Thank you for this suggestion. We have repeated all the previous cell experiments presented in the 
original manuscript using young and old mouse myogenic progenitors and human myogenic 
progenitors, treated with either scrambled control, miR-24, antagomiR-24 but also including an 
additional group with siPrdx6 to further elucidate the role of Prdx6 in myogenic progenitor viability, 
myogenic potential and senescence. These results are further complimented with additional 
experimentation including detection of mitochondrial ROS using Mitosox Red, quantification of DNA 
damage repair through immunostaining for phosphorylated H2AX, Western blots for Prdx6, 
Westerns for another mitochondrial peroxidase Prdx3 and the chaperone protein Hsp70.

Reviewer 1

Thank you for the invitation to review “miR-24: Prdx6 interactions regulate oxidative stress and 
viability of myogenic progenitors during aging” by Soriano-Arroquia et al. In this manuscript the 
authors provide mechanistic insight, spanning cells models, animal models and primary human 
tissue, to the interaction of miR24 and peroxiredoxin-6 and satellite cell function in the context of 
skeletal muscle ageing. The manuscript is very well written, and provides unique insight into the 
molecular regulators of satellite cell senescence during ageing. Further the evaluation of miRs as 
molecular regulators of redox biology is an emerging area, of interest to a wide readership.

Thank you for this comment, we agree that the manuscript presents novel data relevant to both 
microRNA and ageing fields.

This manuscript would likely garner attention from miRNA researchers outside of the muscle field. 
Thus, I feel the BaCl2 experiments needs a little more information and perhaps justification, to 
provide context in the type and magnitude of injury induced by this model and its applicability to 
studying muscle ageing. If the authors have any tangible data (perhaps included in the 
supplementary figures), then I think this could be a useful addition.

Thank you for this suggestion. Local injections with Barium Chloride (BaCl2) is a widely used model of 
skeletal muscle injury, established decades ago for the study of muscle generation and repair in vivo 
(Cerri et al. 2008, Kim et al. 2016). This model has been used by many researchers since it relatively 
inexpensive but an elegant approach, also comparable to other conventional acute injury models 
such as cardiotoxin (Hardy et al. 2016, Jung et al. 2019). Particularly, local muscle injury with BaCl2 

has been shown to induce depolarization of the sarcolemma, membrane rupture, proteolysis and 
motor denervation in the skeletal muscle fibers (Morton et al. 2019). However, BaCl2- induced 
muscle damage preserves satellite cells allowing for detailed study of their role in muscle 
regeneration (Morton et al., 2019). Through a straightforward intramuscular injection, a significant 
proportion of muscle is damaged and the regeneration follows through infiltration of immune cells, 
satellite cells activation with most of the damage resolved by 21 days in adult mice. However, in old 
mice, this damage is not resolved within 21 days, therefore this model is considered appropriate for 
studying changes in muscle regeneration during ageing (Fig. 1K). Representative images have been 
now included in the revised manuscript in Fig. 1K.
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I was particularly interested in the mooted role of modified ROS generation in this model; however, I 
am not clear on the rationale of the experimental design – in the context of spiking the samples with 
hydrogen peroxide. Given the modified satellite cell function observed during ageing, I would have 
expected the authors to measure ROS using the typical family of fluorescent probes. Could the 
authors please clarify further (or more explicitly) why they chose to introduce hydrogen peroxide 
(mimicking oxidative stress), rather than measure endogenous ROS generation in their model, in the 
absence of H2O2?

The reviewer has made a good point, DCFH-DA is quite unspecific in terms of a measure of overall 
ROS and some of the chemistry is not fully understood. As mentioned we have repeated all previous 
experiments using primary mouse (young and old) and human myoblasts treated with miR-24 or 
antiiR-24 but have also included a group treated with siPrdx6 in the revised manuscript. Since Prdx6 
has been previously shown to regulate mitochondrial ROS generation, we have focused on the 
measurement of MitoSox Red as an indicator of mitochondrial generated superoxide (Figs. 3F,H, 
6C,F). In addition, we stained the mitochondria with Mitotracker Red to visualise their morphology 
(Figs. 3E, 6C). 

Following on from my prior point, do the author have any gauge on whether markers of oxidative 
damage follow the trend they observed in CA-DCFH-DA fluorescence?

This is an excellent suggestion by the reviewer and we have now included a quantification of 
markers of DNA damage (H2AX) to compliment the increase in Mitosox in miR-24 and siPrdx6 
treated cells, coupled with the increase in senescent cells. We have also included in the revised 
manuscript images of mitochondrial networks in these cells visualised using MitoTracker Red and 
have included Western blots analyses of the expression of Prdx6 and Prdx3 in young and old mouse 
primary myoblasts and human primary myoblasts (Fig3.E-H and Fig4.F-G). We found that consistent 
with the original data and Prdx6 downregulation resulted in altered morphology of mitochondrial 
networks, increased mitochondrial ROS generation and increase in DNA damage marker, however 
this was not associated with increase in PRDX3 levels (Figs.3,6). Interestingly, inhibition of miR-24 
and downregulation of Prdx6 had an effect on HSP70 levels, which was different between cells from 
adult and old mice, which may provide further clarification on the more pronounced phenotype 
elucidated by miR-24 in cells from old mice (Fig. 4F,G).
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Further, can the authors clarify the use of the DCFH-DA probe over other fluorescent probes? I am 
aware this is mentioned as a limitation; however, I feel the choice needs justification. I take a very 
pragmatic view on this, since there is not necessarily always an adequate choice, with many of the 
tools we used to measure ROS indirectly, have their own limitations.

The reviewer has made an excellent point and we agree that the original experiment in which cells 
were treated with H2O2, likely masking the effect of miR-24 and Prdx6, as well as using an unspecific 
ROS probe, was not very informative. Therefore,  as mentioned previously in the revised manuscript 
where we have repeated all work on mouse and human primary myoblasts to include the siPrdx6 
group, we have used Mitosox as an indicator of mitochondrial superoxide generation (Figs. 3F,H, 
6C,F).

In some instances, modulation of specific antioxidant defence enzymes can invoke compensatory 
changes in others. Do the authors have any insight as to whether siRNA suppression of Prdx6 induced 
any compensatory responses in other systems.

Again this is an excellent point and we have analysed the expression of Prdx3, Hsp70 and SOD1 along 
with Prdx6, key antioxidant and chaperone proteins within the cell. On the protein levels, we 
consistently detected downregulation of PRDX6 in myogenic progenitors from adult and old mice, 
however the variability between the experimental groups was high and this is reflected throughout 
manuscript. Nevertheless, we are confident with the data as the phenotype elucidated by miR-24 
and siPrdx6 was consistent between different assays used and between experiments performed in 
the original and revised manuscripts, both performed using different sets of reagents (due to 
discontinuation of miR-24 antimiR, control RNA and siRNA Prdx6 used in the original manuscript).
 We detected significantly decreased expression of Prdx6 in human primary myoblasts (Fig.6G) and 
adult myoblast treated with siPrdx6 but this did not reach significance in old primary myoblasts. This 
was associated with no change in PRDX3 or SOD1 levels and an increase in the expression of the 
chaperone protein HSP70 in primary myoblasts from adult but not old mice (Fig.4F,G, S6). These 
data suggest a potential mechanism by which miR-24:Prdx6 interactions may regulate cell 
senescence more robustly in the cells from old mice.

The authors use siRNA to supress Prdx6 expression in several experiments, could you please provide 
some information on the knockdown efficiency of your models?

The efficiency of the siPrdx6 was much more effective in human primary myoblasts with a very clear 
decrease in protein expression (~25%) (Fig. 6G). The change in expression of Prdx6 following siRNA in 
primary myoblasts from mice was ~50%, that reached significance in young but not old cells. We 
have repeated these experiments multiple times and the variability in the efficiency of transfections 
is quite high using siRNA as compared to miR mimic or antimiRs (Figs. 4. D,E,F,G, S2). 

Similarly, could you provide some quantitative measure of transfection efficiency across all 
experiments?

In addition to the transfection efficiency observed when using siPrdx6 above, for 100nM miR mimic 
and antimiR, we observe >50% transfection efficiency in myoblasts as determined by fluorescently-
labelled control mimics. However, we optimise the concentration of miR mimic or antagomiR based 
on significant up- or downregulation of miR, respectively.  We aim for 2-fold increase or reduction in 
expression. These data are shown in Fig.S2.  

Reviewer 2
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In this paper the authors identify miR-24 as a potential regulator of factors involved in oxidative 
stress in satellite cells. The use a range of studies to examine the expression of miR-24 in muscle and 
in sorted muscle satellite cells from old and young mice.  They identify miR-24 as differentially 
expressed between satellite cells from old and young mice.  They examine the effects of both the 
miRNA and its antagomiR (AM24) on cell viability and on myotube formation.  In old cells miR-24 
reduces senescence and in adult cells AM24 reduces senescence. The gene expression data presented 
alongside are a little difficult to interpret as there is an increase in senescence markers in the adult 
cells in response to miR-24 but a reduction in old cells.  Whether this is a consequence of the relative 
proportions of already senescing cells in the two different populations is difficult to know. 
The they show miR-24 can target Prdx6 and they examine the ability of miR-24 and AM24 to regulate 
Prdx6 mRNA and ROS.  Finally they look at the effects of the miR and antagomiR in human cells on 
the same parameters.  Overall, I find the data a little confusing as there are different (and sometimes 
opposing) effects of miR-24 and AM24 dependent on the age of the cells. If this is the case it is 
essential to pin down the real reasons and I am not sure that they manage this in the paper as 
presented.  In particular they try to reason that Prdx6 is the key and I am not convinced that they 
succeed (see major point 3).

We would like to thank the reviewer for their comments and agree with the reviewer that the results 
were not always clear in the original submitted manuscript. We have repeated all the cell work using 
primary myoblasts from humans and mice to include a group with siPrdx6. We believe the data 
presented in the revised manuscript is a lot cleaner and supports our previous results on the role of 
Prdx6 in senescent cells.

Specifically, we further explored the role of miR-24 on senescence and optimised our experiment. As 
discussed in the manuscript, page 9:

According to published data, miR-24 regulates the expression of tumour 
suppressor/senescence-associated proteins differently depending on the cell type and 
metabolic state of the cell: it reduced P16 protein levels in human diploid fibroblasts and 
cervical carcinoma cells and it inhibited H2Ax in terminally differentiated hematopoietic cells 
making them vulnerable to DNA damage (Lal et al., 2009). On the other hand, miR-24 has been 
shown to increase p53 and p21 protein levels in different cancer cell lines (Mishra et al., 
2009); and to induce p53 expression in human epithelial cells during aging and oxidative 
stress (Lu et al., 2018). Together, these results suggest that miR-24 exerts either an inhibitory 
or enhancer function over tumour suppressor/senescence-associated proteins depending on 
the cell cycle state, which is consistent with our findings. Context-dependent role of miRs has 
been previously demonstrated, as well as their dose-dependent regulation of physiological 
processes (Vasudevan, 2012).

As mentioned above, miR-24 targets several genes associated with cellular senescence and we agree 
with the reviewer that Prdx6 is, although important, is one of many physiologically relevant miR-24 
targets. However, the date consistently indicate similarities between miR-24 overexpression and 
Prdx6 downregulation phenotypes. We agree that AM24 had limited effect on cellular senescence. 
This may be because the cells entered an irreversible senescence or the effect was not strong 
enough to be detected (Figs. 3A, 6A). Nevertheless, AM24 clearly promoted cell survival and 
myogenic differentiation (Figs. 2, 5).  
miR-24 may have a different role on regulating cell cycle-associated genes depending on their cell 
cycle status as indicated by the acute increase in expression following muscle injury in adult mice 
(Fig. 1J). In the original manuscript, we used late passage cells with populations of approximately 
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50% cells showing replicative senescence. Moreover, the cells used were from a wide range of mice 
(adult 1-8 months old and old 20-24 months old). As dynamic changes occur in muscle during these 
ages, we optimised our approach in the revised manuscript and used cells at P4-P7 for all assays and 
cells from 6 (adult) or 24 (old) months old mice. Whilst miR-24 had a stronger effect on cells from old 
mice, the phenotypic effects were the same between cells from adult and old mice: miR-24 
upregulation, as well as downregulation of its target Prdx6, was in all cases associated with an 
increase in cell senescence, as well as increased ROS generation and increase in the marker of DNA 
damage. 
Moreover, we have explored further how miR24:Prdx6 may regulate cell viability, myogenic 
potential and senescence during ageing. Through exploring mitochondrial network morphology and 
ROS generation, as well as maker of DNA damage and changes in the levels of senescence (p16, 
p53). We believe that the data support the role of miR-24:Prdx6 in regulating viability and 
senescence pathways through increase in ROS generation and DNA damage which is associated with 
changes in viability and senescence upon miR-24 upregulation and downregulation of Prdx3. This is 
now discussed in the revised manuscript. 

The authors claim in that the number of satellite cells goes down, the figure says % these are not 
necessarily the same thing as there could be an increase in fibroblasts or inflammatory cells in the old 
for the same number of satellite cells and that would give the same result.

Raw numbers would not provide a realistic interpretation of the data since the starting material 
(amount of muscle collected), as well as technical variabilities during the different FACS performed 
(such as longer sorting times), will affect the total number of cells sorted. We show in our FACS 
results that the % of satellite cells over the total number of cells decreases in the old mice compared 
to the adult mice. However, the results demonstrated in this manuscript are consistent with 
previously published data on decrease in satellite cell number during ageing (e.g. Snow et al, The 
effcts of aging on satellite cells in skeletal msucles of mice and rats; Cell Tissue Res, 1977; Verdijk et 
al., Reduced satellite cell numbers with spinal cord injury and aging in humans; Med Sci Sports Exerc, 
2012). 

Normalisation of data and use of t-Tests.  I am a little concerned about the use of t-tests for data that 
has been normalised to 1 to allow the comparison of replicate experiments. Whilst it is common 
practice, I am not sure that it is correct.  The t-test requires a normal distribution and this approach 
normally violates it in 2 ways.  Firstly, the value 1 has no distribution so cannot be said to have a 
normal distribution and secondly the ratios are often not normally distributed because a two-fold 
reduction produces 0.5 whereas a two-fold increase is 2.  If you use this approach to random data it 
is easy to generate a statistically significant increase with just noise.  I realise that many of the 
differences observed are decreases but the point still stands.  There needs to be a variance on the 
normalised value for a t-test to be applicable.

We agree with the reviewer. We originally normalised the data as described above, the variability of 
the control cell phenotype was high, most likely due to the wide range of ages of mice used to 
isolate myogenic progenitors. In the revised manuscript, all data collection has been repeated using 
6- and 24-month mice and cells. 
All statistical analyses have been performed on raw values; this information is contained within each 
figure legend.  T test have only been used for pairwise comparison if data was deemed normally 
distributed, otherwise Mann Whitney test was used. For multiple comparisons, we used One Way 
A.N.O.V.A followed by Tukey’s multiple comparison or Kruskal Wallis test followed by Dunn’s 
multiple comparison, as indicated in the figures. 
We are happy to note that between the two different experimental settings and two sets of 
different reagents: miR-24, AM24 and siPrdx6, all data is consistent in terms of the phenotype 
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induced by miR-24 and Prdx6. We included original data in the supplementary figures for the 
purpose of transparency and further support of the conclusions. 

 I am not sure that the miR-AM24 data really support the suggestion that the miRNA targets Prdx6 to 
increase oxidative stress.  The data in Fig 4 show that there is more PrdX6 in cells from old 
mice(A),  that there is a potential target site in the 3’-UTR (B) and that this site is targeted by miR-24 
(C). However, any suppression of Prdx6 mRNA by additional miR-24 is small and only seen in old mice 
and there is no real effect of the AM24 (D/E).  There is no western blot data to show reduced protein 
(which may have a larger effect). 

We have analysed the expression of Prdx3, Hsp70 and SOD1 along with Prdx6, key antioxidant and 
chaperone proteins within the cell. On the protein levels, we consistently detected downregulation 
of PRDX6 in myogenic progenitors from adult and old mice, however the variability between the 
experimental groups was high and this is reflected throughout manuscript. Nevertheless, we are 
confident with the data as the phenotype elucidated by miR-24 was consistent between different 
assays used and between experiments performed in the original and revised manuscripts, both 
performed using different sets of reagents (due to discontinuation of miR-24 antimiR, control RNA 
and siRNA Prdx6 used in the original manuscript).
 We detected a significant decreased expression of Prdx6 in human primary myoblasts (Figs. 4F,G, 
6G) and adult myoblast treated with siPrdx6 but this did not reach significance in old primary 
myoblasts. This was associated with no change in PRDX3 or SOD1 levels and an increase in the 
expression of the chaperone protein HSP70 in primary myoblasts from adult but not old mice (Figs. 
4F,G, 6G, S6). These data suggest a potential mechanism by which miR-24:Prdx6 interactions may 
regulate cell senescence more robustly in the cells from old mice.

The data in F, G and H are suggested to show changes in ROS production in the presence of 
H2O2.  However, the size of the difference in the oxidative stress markers following transfection 
seems very small.  Given the data are normalised to 1 the increase is 2.5%.  The images also show a 
much larger apparent difference but the difference is restricted to what look like cells in clumps so it 
would be useful to see brightfield images to accompany the fluorescent images. Finally, I am not sure 
that the data in G and H really support the conclusion that is drawn.
In young mice there are no significant differences, whereas there are some differences in the old 
mice.   The argument given is that there is more miR-24 in the young mice therefore less Prdx6 (Figs 
1H and 4A).  Consequently, if miR-24 was a major contributor to the reduction in Prdx6 then the 
AM24 should have a larger effect in the young mice than in the old but this doesn’t happen, indeed 
there is no effect of the AM24 in the young mice. Similarly, as the amount of ROS precursor (H2O2) 
added is the same and there should be more Prdx6 in the old cells then if Prdx6 was the major 
regulator of oxidative stress in the system then there should be greater ROS production in the young 
mouse samples (due to less Prdx6) than in the old mouse samples but from the images this isn’t the 
case. 
Furthermore, the significant differences for miR-24 in the old mice are between transfection with 
miR-24 and transfection with the AM24 and not between either and the control.  The argument here 
is that the levels of miR-24 are low so there is no effect of the AM24.   However, as the levels of Prdx6 
are very high there ought to be a significant effect of the miR and there isn’t. 
 Furthermore, knockdown of Prdx6 increases ROS (siRNA data) but this increase is suppressed by 
addition of the AM24.  As Prdx6 has been knocked down by an siRNA how can the effects of the 
AM24 on ROS be via Prdx6 as there is no Prdx6 for miR-24 to be suppressing so no effect for the 
AM24 to reverse. Any effect of the AM24/miR would have to be by targeting a separate component 
of the ROS pathway or an indirect effect on Prdx6 expression (though this seems to be ruled out by 
Fig 4D/E).  This later argument also applies to the data in Fig 6B where again the AM24 reverses the 
effect of the siRNA.
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As reviewer 1 commented, DCFH-DA is quite unspecific in terms of a measure of overall ROS and 
some of the chemistry is not fully understood. As mentioned above, we have repeated all previous 
experiments using primary mouse (young and old) and human myoblasts treated with miR-24 or 
antagomiR-24 but have also included a group treated with siPrdx6 in the revised manuscript. Since 
Prdx6 has been previously shown to regulate mitochondrial ROS generation, we have focused on the 
measurement of MitoSox Red as an indicator of mitochondrial generated superoxide. In addition, we 
stained the mitochondria with Mitotracker Red to visualise their morphology (Figs. 3E,F,H, 6C,D,F). 
We did not treat the cells with H2O2 as indicated in Figure S5, treatment of H2O2 produces a 
massive induction of ROS generation, which was likely masking the effects of miR-24 and Prdx6 in 
the original manuscript.
We believe that the more pronounced effects of miR-24 in cells from old mice are the result of miR-
24 regulating other genes, such as p21, and not due to different levels of Prdx6 between adult and 
old cells (please see page 9 discussion and above) – we would like to thank the reviewer for pointing 
this out. 

Reviewer is correct and there are multiple possible pathways through which Prdx6 can exert its 
effects, as Prdx6 has a number of known functions as a peroxidase and phospholipase activities, 
indeed the latter of which can potentially promote ROS production via its role in the activation of 
Nox2. The data presented in the revised manuscript would confirm our original hypothesis that 
Prdx6 has a key role in senescence via the increase in ROS generation and overall DNA damage. 
Nevertheless, we acknowledge this limitation of our data in the revised manuscript (page 10):
Moreover, the diverse activities of Prdx6, including peroxidase, PLA2 phospholipase and LPCAT 
activities, mean that it could potentially regulate different metabolic signalling pathways, from cell 
cycle, membrane repair and antioxidant response (Arevalo & Vázquez-Medina, 2018; López Grueso et 
al., 2019). The limitation of this manuscript is that it did not explore the function of Prdx6 as PLA2 
phospholipase in the context of muscle ageing.

Line 177: position 2-6 (6mer): should be 5mer

Thank you, this has been corrected.
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 34 

GRAPHICAL ABSTRACT 35 

Age-related changes in miR-24 and its target gene Prdx6 contribute to defective function of myogenic 36 

progenitors and muscle regeneration during aging. miR-24 upregulation and downregulation of its 37 

target Prdx6 is associated with an increase in  mitochondrial ROS, increase in pH2Ax, decreased cell 38 

viability, myogenic potential and increased senescence. During aging, downregulation of miR-24 in 39 

satellite cells and after muscle injury may represent a compensatory mechanism acting to preserve 40 

cell viability and myogenic potential. 41 

 42 

ABSTRACT 43 

Satellite cell-dependent skeletal muscle regeneration declines during aging. Disruptions within the 44 

satellite cells and their niche, together with alterations in the myofibrillar environment contribute to 45 

age-related dysfunction and defective muscle regeneration.  46 

In this study, we demonstrated an age-related decline in satellite cell viability and myogenic potential, 47 

and an increase in ROS and cellular senescence. We detected a transient upregulation of miR-24 in 48 

regenerating muscle from adult mice and downregulation of miR-24 during muscle regeneration in 49 

old mice. FACS-sorted satellite cells were characterised by decreased levels of miR-24 and a 50 

concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we 51 

demonstrated that miR-24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in 52 

Prdx6 levels following changes in miR-24 expression indicate miR-24 plays a role in fine-tuning Prdx6 53 

expression. Changes in miR-24 and Prdx6 levels were associated with altered mitochondrial ROS 54 

generation, increase in the DNA damage marker: phosphorylated-H2Ax and changes in viability, 55 

senescence and myogenic potential of myogenic progenitors from mice and humans. The effects of 56 

miR-24 were more pronounced in myogenic progenitors from old mice, suggesting a context-57 

dependent role of miR-24 in these cells, with miR-24 downregulation likely a part of a compensatory 58 

response to decline in cell function during aging. 59 

We propose that downregulation of miR-24 and subsequent upregulation of Prdx6 in muscle of old 60 

mice following injury is an adaptive response to aging, to maintain satellite cell viability and myogenic 61 

potential through regulation of mitochondrial ROS and DNA damage pathways.  62 

 63 

 64 

 65 

 66 

 67 

Page 13 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 3 

INTRODUCTION 68 

The regenerative capacity of skeletal muscle facilitates a high plasticity for adaptation to diverse 69 

metabolic conditions and energetic demands. Skeletal muscle regeneration after injury and loading 70 

stressors relies on satellite cells, the adult muscle stem cells able to regenerate muscle fibres in vivo. 71 

A balance between satellite cells self-renewal and myogenic differentiation is essential for successful 72 

muscle regeneration after injury (Sambasivan & Tajbakhsh 2015). However, the effectiveness of 73 

muscle regeneration throughout lifespan not only relies on the functionality of satellite cells (Lepper 74 

et al. 2011), but also other factors, such as disrupted intracellular signalling and an altered muscle 75 

fibre microenvironment are known to play a key role in muscle wasting during disuse, ageing and 76 

chronic diseases (Fry et al. 2015; Le Moal et al. 2017). In particular, oxidative stress has been 77 

demonstrated to alter the cellular microenvironment, resulting in disrupted cellular signalling and 78 

potentially oxidative modifications of muscle contractile proteins (Goljanek-Whysall et al. 2016; 79 

Sakellariou et al. 2017). Some of the important muscle antioxidant proteins that directly affect 80 

intracellular ROS concentrations are members of the peroxiredoxin family: (PRDX1-PRDX6). 81 

Peroxiredoxins have the capacity to regulate redox homeostasis and signalling pathways involved in 82 

processes such as apoptosis and cell survival or in response to injury. Particularly, Peroxiredoxin 6 83 

(Prdx6) has been demonstrated to regulate both myogenesis and adipogenesis via the control of 84 

glucose uptake (Pacifici et al. 2014; Wu et al. 2015), and Prdx6-/- mice display increased levels of 85 

markers of senescence, metabolic sarcopenia and loss of muscle strength (Pacifici et al. 2020).  86 

 87 

microRNAs (miRNAs, miRs) are short non-coding RNAs approximately 20-22 nucleotides in length. 88 

miRs show partial complementarity to their target mRNA(s) and regulate gene expression at the post-89 

transcriptional level (Lee et al. 1993). miRs are known to regulate a myriad of biological processes, 90 

including muscle homeostasis and aging through processes such as ROS generation and scavenging 91 

(Goljanek-Whysall et al. 2020). miR-24 is highly expressed in skeletal muscle (Wada et al. 2011) and 92 

has been proposed to regulate myogenesis in vitro and to inhibit muscle fibrosis in vivo (Sun et al. 93 

2008; Sun et al. 2018). Yet, the functional role of miR-24 in human and mouse primary myogenic 94 

stem/progenitor cells, including oxidative stress, and in skeletal muscle aging remains elusive.  95 

 96 

In this study, we identified changes in miR-24:Prdx6 interactions in satellite cells during aging. Our 97 

data confirm a decline in satellite cell fraction, viability and myogenic potential in muscle from old 98 

mice. miR-24 expression was downregulated in FACS-sorted satellite cells during aging, with the 99 

concomitant upregulation of its target Prdx6. Our results demonstrate a transient upregulation of miR-100 

24 in regenerating muscle from adult mice after acute injury, whereas in old mice, we detected 101 

Page 14 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 4 

downregulation of miR-24 expression during muscle regeneration. Using GFP reporter constructs, we 102 

demonstrated the binding of miR-24 to its target site within Prdx6 mRNA. Changes in miR-24:Prdx6 103 

interactions were associated with altered mitochondrial ROS generation and levels of phosphorylated-104 

H2Ax in myogenic progenitors and affected their viability, myogenic potential and senescence. The 105 

effects of miR-24 up- and downregulation were more pronounced in myogenic progenitors from old 106 

mice, suggesting a context-dependent role of miR-24 in these cells. We propose that changes in miR-107 

24:Prdx6 interactions during aging are aimed at preserving satellite cells viability and function. We 108 

hypothesise that age-related downregulation of miR-24 and subsequent increased Prdx6 expression 109 

in satellite cells represents an adaptive mechanism aimed to improve the regenerative capacity of 110 

skeletal muscle through preserving satellite cell viability and function by regulating ROS-associated 111 

pathways. 112 

 113 

RESULTS 114 

miR-24 is downregulated during skeletal muscle regeneration and aging 115 

miR-24 has been previously shown to be regulated during satellite cell activation (Cheung et al. 2012; 116 

Redshaw et al. 2014). Some of the miR-24 putative targets in humans, analysed using TargetScan and 117 

ClueGO plugin for Cytoscape, were genes associated with the cellular response to oxidative stress, 118 

including Prdx6  (Figure 1A). We focused on miR-24 target genes associated regulation of viability, 119 

differentiation and senescence through regulation of redox balance, as redox homeostasis has been 120 

shown to regulate all these processes during aging (Le Moal et al. 2017). Prdx6 has been shown to 121 

regulate skeletal muscle adaptation under increased oxidative stress (Da Silva-Azevedo et al. 2009). 122 

Prdx6 was upregulated in FACS-sorted satellite cells isolated from old mice compared to adult mice 123 

(Figure 4A), but not in the tibialis anterior muscle from old mice (Figure S2). This is consistent with 124 

downregulation of miR-24 expression in satellite cells but not muscle during aging (Figure 1H, J). We 125 

therefore investigated age-related changes in miR-24:Prdx6 interactions in satellite cells. We observed 126 

a decrease in the total number of FACS-sorted satellite cells during aging (Figures 1B, S1), consistent 127 

with previously published data (Gibson & Schultz 1983). Myogenic progenitors from old mice 128 

displayed increased senescence (Figures 1C, 3A), reduced viability (Figures 1D, 2A), reduced myogenic 129 

potential (Figures 1E, 2D) and increased ROS (Figures 1F, 1G). miR-24 expression was downregulated 130 

in satellite cells from old mice (Figure 1H).  The expression of miR-24 was also analysed by RT-qPCR in 131 

an in vivo model of skeletal muscle regeneration following barium chloride (BaCl2) injection (Figures 132 

1I, 1J, 1K). Local muscle injury with BaCl2 has been shown to induce depolarization of the sarcolemma, 133 

membrane rupture, proteolysis and motor denervation in the skeletal muscle fibers (Morton et al. 134 

2019). However, BaCl2- induced muscle damage preserves satellite cells allowing for detailed study of 135 
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their role in muscle regeneration (Morton et al., 2019). Most of the damage resolved by 21 days in 136 

adult but not old mice, in which central nuclei remain after 21 days (Figure 1K). miR-24 basal levels 137 

were not altered in TA muscle during aging, as opposed to its downregulation in satellite cells (Figure 138 

1H, 1J), but its expression was increased one day after muscle injury and returned to basal levels after 139 

seven days in the injured muscle of adult mice, suggesting a potential role of miR-24 in the early stages 140 

of muscle regeneration after acute injury. However, the expression of miR-24 did not increase in old 141 

mice following injury: miR-24 expression was significantly lower at 1-21 days after injury compared to 142 

the adult mice (Figure 1J). These data suggest that the downregulation of miR-24 in satellite cells 143 

(Figure 1H) may be related to the age-related decline in satellite function and consequently muscle 144 

regeneration following acute injury.  145 

miR-24 regulates viability and myogenic potential of myogenic progenitors during aging 146 

The function of satellite cells in muscle regeneration depends on their viability and myogenic 147 

potential, both are affected by aging (Figures 1D, 1E). To determine the physiological consequences 148 

of miR-24 and its target Prdx6 dysregulation in satellite cells during aging and regeneration, myogenic 149 

progenitors isolated from adult and old mice were transfected with miR-24 mimic, AM24, siRNA for 150 

Prdx6 or scrambled RNA (control) and stained to evaluate differentiation (MF 20), proliferation (Ki67) 151 

and viability (Figures 2, S4). miR-24 had no significant effect on myogenic progenitor proliferation 152 

(Figure S3). However, overexpression of miR-24 and downregulation of Prdx6 expression resulted in 153 

the increased proportion of necrotic and apoptotic myogenic progenitors from adult and old mice and 154 

inhibition of miR-24 resulted in an increase in the total number and number of viable myogenic 155 

progenitors (Figure 2A, B). Moreover, overexpression of miR-24 and downregulation of its target: 156 

Prdx6, in myogenic progenitors from adult and old mice resulted in inhibition of myogenesis (Figure 157 

2C, D). These data were consistent with previous, independently performed analyses of miR-24 role 158 

in myogenic progenitors (Figure S3). 159 

miR-24 and its target Prdx6 regulate senescence of myogenic progenitors. 160 

Satellite cells have been previously shown to undergo senescence during aging (Blau et al. 2015; Zhu 161 

et al. 2019). Adult and old myogenic progenitors at passage 7, Senescent cells become present in both 162 

culture from adult and old myogenic progenitors from at passage 7, cells were then transfected with 163 

miR-24 mimic or inhibitor (AM24) or Prdx6 siRNA. Overexpression of miR-24 or Prdx6 downregulation 164 

led to a higher proportion of senescent cells in myogenic progenitors from both adult and old mice, 165 

as well as higher number of senescent cells as measured by SA-βgal staining and by measurement of 166 

fluorescent SA-βgal. (Figure 3A-C). The expression of senescence-associated genes p16 and p53 was 167 

not changed in myogenic progenitors from adult mice following miR-24 overexpression or Prdx6 168 
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downregulation (Figure 3D). In myogenic progenitors from old mice, miR-24 overexpression and 169 

downregulation of Prdx6 led to increased p16 and p53 levels, which were significantly different in cells 170 

treated with siRNA for Prdx6 (Figure 3D). However, inhibition of miR-24 in myogenic progenitors from 171 

old mice had no significant effect on number of SA-βgal positive cells or the overall proportion of 172 

senescent cells or expression of senescence-associated genes (Figure 3A-D). This could be associated 173 

with already low levels of miR-24 in cells from older mice or altered levels of other target genes of 174 

miR-24, such as p21 in myogenic progenitors from adult and old mice (Lal et al., 2009)(Mishra et al., 175 

2009)(Lu et al., 2018). The latter is supported by our initial assessment of the role of miR-24 in 176 

regulating senescence of myogenic progenitors, where miR-24 had different effects on changes in 177 

senescence-associated gene expression in senescent cells from adult and old mice, despite similar 178 

effects on cellular senescence on the phenotypic level (Figure S3C,E).   179 

miR-24 and its target Prdx6 regulate mitochondrial ROS production and the levels of DNA damage 180 

marker.  181 

As Prdx6 has been previously shown to regulate mitochondrial dynamics and function, myogenic 182 

progenitors cells transfected with miR-24, AM24 or Prdx6 siRNA and stained with MitoTracker Red to 183 

visualise mitochondria (Figure 3E), as well as Mitosox Red and phosphorylated H2Ax, to detect 184 

mitochondrial ROS and DNA damage, respectively (Figure 3E-H). Myogenic progenitors from both 185 

adult and old mice showed disrupted mitochondrial morphology, increased mitochondrial ROS 186 

production and increase in DNA damage marker following overexpression of miR-24 or 187 

downregulation of Prdx6 expression (Figure 3E-H). These effects were more pronounced in myogenic 188 

progenitors from old mice, consistent with the differences in regulation of senescence by miR-24 in 189 

myogenic progenitors from adult and old mice, suggesting a context-dependent function of miR-24. 190 

Together, these data indicate a potential mechanism of regulation of myogenic progenitor senescence 191 

and viability by miR-24 and its target Prdx6, where increased levels of miR-24 and concomitant 192 

downregulation of Prdx6 lead to disruption of mitochondrial morphology, increase in mitochondrial 193 

ROS production, increase in DNA damage marker levels and induction of pro-apoptotic and/or pro-194 

senescent pathways, likely through p16 and p53 signalling.      195 

miR-24 directly regulates the expression of Prdx6 in myogenic progenitors 196 

Prdx6 is a confirmed miR-24 target in human cells (Li et al. 2016). We next analysed the sequence of 197 

mouse Prdx6 for miR-24 binding sites. A target site for miR-24 was found between position 2-6 (5-198 

mer) of the mature microRNA-24 and position 41-45 5’UTR of the mouse Prdx6-202 transcript (Figure 199 

4B). A GFP reporter containing the wild type or mutated miR-24 binding site for miR-24 was generated 200 

(Figure 4C). C2C12 myoblasts were transfected with reporter constructs containing wild type or 201 
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mutated miR-24 binding site within the Prdx6 5’UTR fragment and co-transfected with miR-24 mimic 202 

or scrambled sequence (control). GFP levels were decreased in the cells transfected with wild type 203 

construct co-transfected with miR-24 as compared to scrambled treated cells, but not in the cells 204 

treated with the mutated construct co-transfected with miR-24 or control Scr microRNA These results 205 

confirm that miR-24 directly binds to Prdx6 mRNA in mouse myoblasts (Figure 4C). We next 206 

investigated Prdx6 expression following miR-24 overexpression or downregulation in myogenic 207 

progenitors from adult and old mice. Prdx6 expression was significantly downregulated following miR-208 

24 overexpression in myogenic progenitors from old but not adult mice (Figure 4E). Similarly, protein 209 

levels of PRDX6 were affected by miR-24 levels in old but not adult mice, although these changes did 210 

not reach statistical significance, likely due to relatively small n number (n=3). Cell treated with Prdx6 211 

siRNA showed lower levels of PRDX6, although the level of downregulation varied between individual 212 

replicates (Figure 3F,G). Interestingly, changes in the levels of miR-24 or Prdx6 did affect the levels of 213 

a mitochondrial peroxiredoxin PRDX3. However, inhibition of miR-24 or downregulation of Prdx6 214 

levels resulted in changes in the levels of chaperone protein HSP70 in adult progenitors suggesting a 215 

potential mechanism underlying the phenotypic differences between the effects of miR-24 on 216 

myogenic progenitors from adult and old mice (Figure 4F,G).    217 

miR-24 regulation of myogenic potential and viability by controlling Prdx6 is conserved in human 218 

myogenic progenitors 219 

We further explored whether the function of miR-24 and its target Prdx6 is conserved in human cells. 220 

Myogenic progenitors isolated from adults were transfected with miR-24 mimic, AM24, siRNA for 221 

Prdx6 or scrambled control. miR-24 overexpression and downregulation of Prdx6 expression resulted 222 

in decreased cell viability and lower total cell number as well as decreased myogenic potential with 223 

miR-24 overexpression and siPrdx6 downregulation resulting in the presence of smaller myotubes 224 

containing fewer nuclei (Figure 5A-D). miR-24 had no effect on proliferation of human myogenic 225 

progenitors (Figure S4), consistently with the lack of miR-24 regulation of murine cell proliferation. 226 

These data are consistent with murine data and our initial assessment of miR-24 role in human 227 

myogenic progenitors (Fig.S4 A,B).  228 

 229 

miR-24 and its target Prdx6 regulate mitochondrial ROS production and senescence of human 230 

progenitors.  231 

miR-24 overexpression and downregulation of Prdx6 expression both led to an increased number of 232 

senescent cells (Figure 6A, B) as compared to control group. To determine whether miR-24 and Prdx6 233 

were involved in regulating ROS levels in human cells, primary myogenic progenitors were transfected 234 

with miR-24 mimic, anti-miR (AM24), siRNA against Prdx6 (siPrdx6) or scrambled control RNA (Scr) 235 
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(Figure 6). Similar to the results obtained from myogenic progenitors isolated from mice (Figure 4), 236 

disrupted mitochondrial morphology and increased mitochondrial ROS production were detected 237 

after miR-24 overexpression and Prdx6 silencing in comparison to scrambled control group (Figure 6C-238 

F). In addition, miR-24 overexpression and Prdx6 silencing led to the presence of nuclei positive for 239 

phosphorylated H2Ax, a marker of DNA damage, however this increase did not reach statistical 240 

significance (Figure 6E,F). Western blot analyses revealed downregulation of PRDX6 levels following 241 

miR-24 overexpression (not significant) and Prdx6 siRNA (significant), however no changes were 242 

detected in the levels of antioxidant protein PRDX6 (Figure 6G). Together, these data indicate that 243 

miR-24 and its target Prdx6 regulate the viability, senescence and myogenic potential through 244 

controlling pathways associated with mitochondrial ROS generation, DNA damage and potentially 245 

unfolded protein response (UPR) with the different effects of miR-24 and Prdx6 on the levels of HSP70 246 

in myogenic progenitors from adult and old mice indicating a potential mechanism underlying the 247 

stronger effects of miR-24 on cells from old mice.   248 

 249 

DISCUSSION 250 

Muscle aging is associated with the disruption of a wide range of physiological processes affecting the 251 

myocyte niche, compromising satellite cell functionality and their regenerative potential in response 252 

to injury (Sannicandro et al. 2019).  253 

Following injury, an acute increase in endogenous ROS is required to promote a pro-inflammatory 254 

environment that helps with macrophage recruitment (Horn et al. 2017). ROS levels decrease at later 255 

stages of regeneration to allow muscle hypertrophy and remodelling (Laumonier & Menetrey 2016). 256 

However, this process must be tightly regulated, as chronically elevated ROS may induce irreversible 257 

protein modifications, aberrant signalling, DNA damage and mutagenesis (Kidane et al. 2014). When 258 

damage persists, cellular stressors can trigger a transient cell cycle arrest via activation of p53/p21 or 259 

p16/pRB axes, which can eventually result in the induction of cellular senescence or cell death 260 

programs such as apoptosis and autophagy (Vicencio et al. 2008). 261 

This study aimed to investigate the underlying biological mechanisms of the microRNA miR-24-3p and 262 

its target gene Prdx6 in muscle regeneration during aging. Our results demonstrate a transient 263 

increase in miR-24 expression one day after acute injury in an in vivo model of skeletal muscle 264 

regeneration in adult mice. miR-24 expression returned to baseline levels 7 days after injury, when 265 

myoblasts stop proliferating and start differentiating to initiate tissue remodelling in mice (Grounds 266 

2014). Similar to the results presented here, miR-24 expression is dynamically changed during gastric 267 

metastasis progression (Li et al. 2016). We have also identified an upregulation of the anti-oxidant 268 

Prdx6 in mouse quiescent satellite cells during aging, and confirmed Prdx6 as a direct target gene of 269 
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miR-24 in mice. However, changes in Prdx6 mRNA and protein levels were modest following miR-24 270 

overexpression and inhibition (Figure 4), suggesting a fine-tuning rather than major regulator role of 271 

miR-24 in controlling the levels of PRDX6.  272 

Our results suggest that downregulation of miR-24 in satellite cells and concomitant upregulation of 273 

its target gene Prdx6 is associated with disrupted mitochondrial network morphology, increased ROS 274 

generation, an increase in the levels of phosphorylated-H2AX, a marker of DNA damage, and on a 275 

phenotypic level, a decrease in cellular viability and myogenic potential, as well as increase in 276 

senescence of surviving cells. Interestingly, miR-24 has been previously shown to regulate senescence-277 

associated genes (Lal et al., 2009)(Mishra et al., 2009)(Lu et al., 2018).and our results also showed 278 

changes in the expression of p16, p21 and p53 in primary myogenic progenitors after miR-24 279 

overexpression or Prdx6 downregulation (Figures 3D, S3). Whilst on a phenotypic level, changes in 280 

miR-24 levels consistently regulated cellular senescence, some differences were observed between 281 

cells which have or not undergone replicative senescence in culture (Figures 3, S3) and cells from adult 282 

and old mice (Figures 3, S3). The effects of Prdx6 downregulation on cell senescence were consistent 283 

in all cells suggesting that miR-24 may regulate cellular senescence through multiple targets in 284 

addition to Prdx6. For example, miR-24 has been shown to increase DNA damage through regulating 285 

the levels of H2AX protein or p21 (Lal et al., 2009). Moreover, according to published data, miR-24 286 

regulates the expression of tumour suppressor/senescence-associated proteins differently depending 287 

on the cell type and metabolic state of the cell: it reduced p16 protein levels in human diploid 288 

fibroblasts and cervical carcinoma cells and it inhibited H2Ax in terminally differentiated 289 

hematopoietic cells making them vulnerable to DNA damage (Lal et al. 2009). On the other hand, miR-290 

24 has been shown to increase p53 and p21 protein levels in different cancer cell lines (Mishra et al. 291 

2009); and to induce p53 expression in human epithelial cells during aging and oxidative stress (Lu et 292 

al. 2018). Together, these results suggest that miR-24 exerts either an inhibitory or enhancer function 293 

over tumour suppressor/senescence-associated proteins depending on the cell cycle state, which is 294 

consistent with our findings. Context-dependent role of miRs has been previously demonstrated, as 295 

well as their dose-dependent regulation of physiological processes (Vasudevan 2012). Moreover, miR-296 

24 may regulate the expression of senescence-regulated genes via an upstream regulatory factor not 297 

yet identified by us. The delicate balance between apoptotic, anti-apoptotic, proliferative and cell 298 

cycle arrest signals will ultimately determine whether some cells successfully differentiate/self-renew 299 

or, in contrast, die/become senescent. 300 

 301 

 302 
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 303 

 304 

Moreover, the diverse activities of Prdx6, including peroxidase, PLA2 phospholipase and LPCAT 305 

activities, mean that it could potentially regulate different metabolic signalling pathways, from cell 306 

cycle, membrane repair and antioxidant response (Arevalo & Vázquez-Medina 2018; López Grueso et 307 

al. 2019). One limitation of this manuscript is that it did not explore the function of Prdx6 as PLA2 308 

phospholipase in the context of muscle muscle repair and ageing. 309 

Another limitation of this study is the variability in the efficiency of the transfection experiments. For 310 

the qPCR experiments, only samples where transfection efficiency was validated, either by an 311 

increased or inhibited expression of miR-24, were taken into consideration for the quantification of 312 

the target gene expression. In particular, the inhibition of miR-24 was challenging to achieve despite 313 

using two different miR-24 inhibitors, which resulted in a reduced number of the independent 314 

replicates used for this particular group. Likewise, the efficiency in the transfection of the cells used 315 

for the immunofluorescence experiments might also be affected. Another limitation to be considered 316 

is the use of solely one technique for the assessment of ROS generation and oxidative stress. Future 317 

studies should corroborate these findings using additional approaches. Despite using two 318 

independent assays to detect cellular senescence, SA-β-gal results should be interpreted with caution, 319 

as increased intensity of the staining in some cells did not always correlate with an extension of the 320 

cytoplasm, which is a well-known characteristic of senescent cells. Therefore, SA-β-gal staining and 321 

higher levels of tumour suppressor proteins may not always indicate a permanent cell cycle arrest, but 322 

probably a stress-induced transient cell cycle arrest that might trigger alternative processes such as 323 

apoptosis or autophagy. This assumption fits well with our data, where miR-24 overexpression and 324 

Prdx6 downregulation lead to cell death and increased senescence. Alternatively, the cells 325 

overexpressing miR-24 or cells with downregulated levels of Prdx6 may enter irreversible senescence 326 

and the final post-senescent stage of cell death (Gamez et al., 2019). Cell senescence and cell death 327 

share common factors and both have been shown to be interdependent in certain scenarios (Gamez 328 

et al., 2019). Our data indicate that overexpression of miR-24 and downregulation of Prdx6 are 329 

associated with changes in mitochondrial morphology, increase in mitochondrial ROS generation and 330 

increased levels of phospho-H2Ax (Figures 3,6). It has been shown that following DNA damage, cells 331 

undergo a temporary cell cycle arrest in an attempt to repair their DNA; if the DNA damage is 332 

unresolved, cells can undergo apoptosis or become senescent; in case of increased damage in 333 

senescent cells, senescent cells may undergo cell death (Gamez et al., 2019).  334 
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Noteworthy, myogenic progenitors isolated from mouse were from males whereas human samples 335 

were retrieved from female donors. Several studies have shown biological differences between rodent 336 

males and females in the development of sarcopenia and efficiency in muscle regeneration, as well as 337 

in the global expression of microRNAs in human skeletal muscle (Maher et al. 2009; Kob et al. 2015). 338 

It is thus important to point out that the altered expression of genes in satellite cells and muscle 339 

progenitors shown in this study might be sex-specific in addition to species-associated differences. 340 

In summary, our results identify a role for miR-24-3p through inhibition of Prdx6 in satellite cells during 341 

aging which may play a key role in early stages of skeletal muscle regeneration after acute injury, 342 

through controlling adaptive redox and apoptotic and senescence signalling pathways. Moreover, our 343 

findings show that miR-24 and Prdx6 regulation of myogenic progenitor phenotype is more 344 

pronounced in cells from old mice, likely due to miR-24 regulation of additional to Prdx6 target genes, 345 

such as p21. This mechanism may not be as strongly conserved in mice as in humans,  as the effects 346 

of miR-24 regulated ROS, myoblast viability, differentiation and senescence was more pronounced in 347 

myoblasts from adult humans. This is not surprising, as miR-24 binding site in Prdx6 resides at the 348 

3’UTR of the human Prdx6 transcript, whereas in mice, this site has a weaker interaction at the 5’UTR 349 

of the Prdx6 transcript. The role of miR-24 in the regulation of muscle regeneration requires further 350 

in vivo studies given the subtle differences in the phenotype induced by miR-24 on myogenic 351 

progenitors from adult and old mice, as these could be further exacerbated through changes in the 352 

satellite cell niche during aging. 353 

We propose that changes in miR-24 and Prdx6 levels in satellite cells during aging represent an 354 

adaptive response to aging aimed at improving cellular viability and myogenic potential and decrease 355 

of cellular senescence through regulating mitochondrial ROS generation and potentially associated 356 

with it DNA damage.  357 

 358 

EXPERIMENTAL PROCEDURES 359 

Reagents. 360 

All reagents are listed in supplementary tables. 361 

 362 

Mouse samples 363 

All experiments described herein received the ethical approval from The University of Liverpool 364 

Animal Welfare and Ethical Review Body (AWERB) and were performed in accordance with UK Home 365 

Office guidelines under the UK Animals (Scientific Procedures) Act 1986. All mice were male wild-type 366 

C57Bl/6 from Charles River (Margaret), maintained under SPF conditions and fed ad libitum and 367 

maintained under barrier on a 12 hours light/dark cycle. For muscle regeneration, tibialis anterior 368 
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muscle was injured by intramuscular injection of barium chloride (1.2% in saline). Tissue was collected 369 

1, 7, 14, or 21 days after injury. Muscle was snap-frozen in liquid nitrogen and stored at -80°C. Muscle 370 

progenitor cells and satellite cells were directly isolated from fresh lower limbs muscles (extensor 371 

digitorum longus, tibialis anterior, gastrocnemius, quadriceps and soleus). For each experiment, n = 3-372 

7 independent replicates per group were used. Young: 6-12 weeks old; adult: 6-8 months old; old: 20-373 

24 months old. For miR-24 and Prdx6 expression in FACS-sorted satellite cells: adult: 1-8 months old; 374 

old: 20-24 months old. 375 

Human samples 376 

All experiments described herein involving human samples were performed according to good 377 

practice guidance and in accordance with The University of Liverpool, University Hospital Aintree 378 

Hospital and South West Wales Research Ethics Committee (Approval No: 13/WA/0374). The 379 

University of Liverpool acted as the ethics sponsor for this study. All the donors had given informed 380 

consent for enrolment in this study. Muscle biopsies were obtained from foot surgeries (extensor 381 

digitorum brevis, tibialis anterior or abductor hallucis muscles) of female patients treated for Hallux 382 

Valgus, with an average age of 33 ± 6.78 years old and a Body Mass Index (BMI) < 25. For each 383 

experiment, and due to limitations in sample availability, both human primary myogenic progenitors 384 

isolated from female donors (n = 2-5 per experiment) and commercialised human primary skeletal 385 

muscle progenitors (ThermoFisher Scientific, n = 1-2 per experiment) were used. For all the 386 

experiments n = 3-7 independent replicates per group, unless stated otherwise. 387 

Satellite cell isolation 388 

Satellite cells were isolated using FACS as previously described (Yi & Rossi 2011; Soriano-Arroquia et 389 

al. 2016). Briefly, skeletal muscle was isolated from the hind limbs of C57Bl/6 wild type male mice and 390 

enzymatically digested with 1.5 U mL-1 collagenase D, 2.4 U mL-1 dispase II and 2.5 mM CaCl2.  Cells 391 

were then dissolved in sterile FACS buffer (2% horse serum in DPBS), filtered through a 40µm cell 392 

strainer and stained with conjugated antibodies in the dark for 30 minutes on ice. Doublets were 393 

discriminated and haematopoietic and endothelial cells (PE-CD31+/CD45+) were excluded from the 394 

sorting gates. Satellite cell population was isolated as BV421-CD34+, Alexa647-Alpha7Integrin+, FICT-395 

Sca1-, PE-CD31-, PE-CD45- and eFluor780-Viability- dye. Sorting was performed at 4°C and samples 396 

were collected in growth media (high-glucose DMEM supplemented with 10% FBS, 1% L-glutamine 397 

and 1% penicillin/streptomycin). Sorted cells were immediately centrifuged and resuspended in Qiazol 398 

(Qiagen) for total RNA isolation. 399 

RNA isolation 400 
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For RNA isolation, cells were collected 48 hr after transfection. Total RNA from sorted cells was 401 

isolated using miRNeasy Mini Kit (Qiagen). Total RNA from primary cells was isolated using 402 

TRIzol/Chloroform standard protocol. After isolation, if necessary samples were purified using ethanol 403 

and sodium acetate. RNA concentration and quality were assessed using Nanodrop 2000.  404 

Real-Time qPCR 405 

cDNA synthesis and Real-Time qPCR were performed as previously described (Soriano-Arroquia et al. 406 

2016). Briefly, cDNA synthesis was performed from 500ng of RNA (for mRNA) or 100ng of RNA (for 407 

microRNA) using SuperScript II (ThermoFisher) or miRscript RT kit II (Qiagen), respectively. SYBR Green 408 

Mastermix (Qiagen) or SsoAdvanced Universal SYBR Green Supermix (BioRad) or FastSybrGreen 409 

(Thermo Fisher; 4385610)  were used for Real-Time quantitative PCR. Relative expression to β-actin, 410 

18S, S29, β -2 microglobulin (mRNA) or Snord-61 (microRNA) was calculated using delta Ct method 411 

(Soriano-Arroquia et al. 2016). 412 

Isolation of primary muscle progenitor cells from mouse and human skeletal muscles 413 

The isolation of human and mouse primary muscle progenitor cells was performed as previously 414 

described (Soriano-Arroquia et al. 2017). Briefly, skeletal muscle tissue was enzymatically digested 415 

with 1.5 U mL-1 collagenase D, 2.4 U mL-1 dispase II and 2.5 mM CaCl2. Digested muscles were 416 

harvested on culture dishes coated with 10µg mL-1 laminin and cultured with F-12 media 417 

complemented with 20% FBS, 10% horse serum, 1% L-glutamine, 1% penicillin/streptomycin and 2.5 418 

ng/mL bFGF (Recombinant Human FGF-basic). Human cells were grown in high-glucose DMEM 419 

supplemented with 20% FBS, 10% horse serum, 1% L-glutamine and 1% penicillin/streptomycin, and 420 

mouse cells were grown in high-glucose DMEM supplemented with 10% FBS, 1% L-glutamine and 1% 421 

penicillin/streptomycin. For differentiation, both human and mouse primary muscle progenitor cells 422 

were cultured in high-glucose DMEM supplemented with 2% horse serum, 1% L-glutamine and 1% 423 

penicillin/streptomycin.  424 

Transfections and immunostaining 425 

All cells in main figures were isolated from 6 month (adult) or 24 month (old) old mice. Cells used in 426 

experiments presented in supplementary data were isolated from mice aged 1-8 months  (young and 427 

adult) or 20-24 months (old) . Transfections of primary cells were performed as previously described 428 

(Soriano-Arroquia et al. 2017). Briefly, primary cells were transfected with 100nM of miR-24-3p mimic, 429 

100nM of miR-24-3p inhibitor, 100nM of scrambled control or 100nM of siRNA against Prdx6 using 430 

Lipofectamine 2000 transfection reagent (ThermoFisher). Cells were used at P4-P7. Cells were plated 431 

at either 80% confluency (differentiation, qPCR, western blotting), or 50% confluency (viability, 432 

proliferation, senescence, MitoTracker and MitoSox staining). Culture media was changed to 433 
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differentiation media (high-glucose DMEM complemented with 2% HS, 1% P/S, 1% α-glutamine) 6 434 

hours after transfection. No media was changed until collection or staining of the cells. Control cells 435 

were transfected with scrambled control. Immunostaining was performed 48 hr (Ki67 staining), 4 days 436 

(viability assay), 7 days (SA-β-galactosidase staining) and 7-10 days (MF 20 staining) after transfection. 437 

RNA and protein were isolated 48 hr after transfection. Staining for MF 20 , SA-β-galactosidase, MF 438 

20, Ki67 and viability assay was performed as previously published methods (Soriano-Arroquia et al. 439 

2017). Fluorescent SA-β-galactosidase, Mitotracker Red, Mitosox and DNA damages were performed 440 

using Cell Event Cell senescence kit, MitoSox Red, MitotTracker Red CM-H2Xros and HCS DNA damage 441 

kits (Thermo Fisher) according to manufacturer’s protocols.  442 

For Western blotting cells were lysed in RIPA buffer and protein concentrations were calculated using 443 

Bradford reagent with BSA as standards. For immunoblotting 20µg (mouse) or 15µg (human) of 444 

protein was loaded on a 10-14% polyacrylamide gels. Following gel electrophoresis samples were 445 

transferred onto nitrocellulose membrane and total protein was stained using Ponceau S. Following 446 

washing of the membrane with TBS-T, membranes were blocked for 1h at room temperature using 447 

either 5% BSA or milk, membranes were washed 3 x 10 min in TBS-T and incubated overnight at 4C 448 

with primary antibodies (see Suppl Tables). Membranes were washed and incubated with secondary 449 

antibodies goat anti-rabbit and goat anti-mouse (Li-Cor Biosciences) and images were obtained using 450 

Odyssey Fc imaging system (Li-Cor). Quantification of blots and normalisation was performed using 451 

Image Studio Lite (Li-Cor). 452 

miR:target binding reporter assay 453 

5′UTR of Prdx6-202 transcript regions with either the wild-type or mutated miR-24-3p target sites 454 

were synthesized using GeneArt service (Thermo Scientific). The wild type or mutated sequences were 455 

subcloned into a GFP TOPO vector (Thermo Scientific). C2C12 myoblasts were cultured in 96-well 456 

plates and transfected using Lipofectamine 2000™ (Thermo Scientific) with either 200ng of the wild 457 

type or mutant sensor and with either 100nM of the miR scrambled control or 100nM miR-24 mimic. 458 

Each experiment was carried out using at least two independent plasmid preparations in triplicate. 459 

GFP fluorescence was measured 48 hr following transfections using FLUOstar Optima microplate 460 

reader (BMG Labtech). 461 

Image analysis 462 

Cells were semi-automatically quantified using Fiji and ImageJ (Schindelin et al., 2012) followed by 463 

manual correction. At least 3-6 random images from different fields of view per biological sample at 464 

10x magnification (100x total magnification) were captured. The only exception of this rule was for 465 

human β-galactosidase analysis, in which a complete tiled field of view image was analysed per 466 
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biological sample. For myogenic differentiation analyses, fusion index is shown as the percentage of 467 

nuclei contained within myotubes to the total number of nuclei in each field of view. For the 468 

quantification of senescent cells, cells were counted manually (only cells showing intense blue staining 469 

were classified as senescent) or β-galactosidase activity values (BGAVs) were calculated as previously 470 

described by Shlush et al. (Shlush et al. 2011). Cells with a BGAV ≥ 15 were considered as highly 471 

senescent (SA-βgalhigh, characterised by an intense blue staining); cells with a BGAV between 5-14 both 472 

inclusive were considered as low senescent (SA-βgallow, characterised by an light blue staining); and 473 

cells with a BGAV < 5 were considered as non-senescent (SA-βgalnon, no blue staining). All the 474 

immunostaining quantifications were manually curated. Images were captured using Nikon Eclipse Ti-475 

E inverted confocal microscope (supplementary data) and Carl Zeiss Axiovert 200 inverted microscope 476 

(for SA-βgal staining) or EVOS M5000 and EVOS M7000 (Thermo Fisher, main figures). 477 

Statistical analysis 478 

Details of the statistical analyses used per experiment are described in the corresponding figure 479 

legend. T-test or Mann-Whitney (qPCR data which is not normally distributed) test were performed 480 

for the analysis of statistical differences between two groups as stated. One way or two-way 481 

A.N.O.V.A. followed by Tukey’s multiple comparison test, or Kruskal-Wallis followed by Dunn’s 482 

multiple comparison test with 95% Confidence Interval was performed to compare more than two 483 

groups as indicated where data was not normally distributed. p-value < 0.05 was considered 484 

statistically significant. All analysis was performed on raw (not normalised) data. For the transfection 485 

experiments, individual values representing the same independent biological replicate have been 486 

matched with a dotted line.  Statistical analysis were performed using GraphPad Prism version 487 

8.4.2/9.0.0 for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com).  488 

Gene ontology 489 

A list of human and mouse miR-24 predicted targets were obtained from TargetScanHuman 6.2 (Lewis 490 

et al. 2005; Grimson et al. 2007; Agarwal et al. 2015). Human and mouse miR-24:targets network 491 

interaction and GO analyses were performed using Cytoscape v.3.8.0 (Shannon et al. 2003) and 492 

ClueGO v.2.5.6 plugin for Cytoscape (Bindea et al. 2009), respectively. Details of the statistics used for 493 

ClueGO are specified in the corresponding figure legend. Generally: Enrichment/Depletion (Two-sided 494 

hypergeometric test); Minimum p-value cut-off = 0.01; Correction Method = Bonferroni step down; 495 

Min GO Level = 5; Max GO Level = 8; Kappa Score Threshold = 0.4-0.55. 496 
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FIGURE LEGENDS 641 

Figure 1. miR-24 expression is affected by muscle injury and aging. (A) miR-24 is predicted to target 642 

genes and processes associated with redox balance in humans. Gene ontology (GO) analysis was 643 

performed by ClueGO plugin for Cytoscape (v.2.5.6). Statistical test used for ClueGO: 644 

Enrichment/Depletion (Two-sided hypergeometric test). p-value cut-off = 1.0E-4. Correction Method 645 

= Bonferroni step down. Min GO Level = 5; Max GO Level = 8; Number of Genes = 16; Min Percentage 646 

= 4.0; Kappa Score Threshold = 0.4. Only targets involved in ‘cellular response to oxidative stress’ are 647 

shown. (B) The percentage of mouse satellite cells decreases during aging (n = 4-7, R2 = 0.9484). (C-E) 648 

Myogenic progenitors from old mice are less viable, have decreased myogenic potential and display 649 

increased senescence (n = 3-6, two-tailed unpaired Student’s t-test). (F) The accumulation of ROS 650 

assessed using the CM-H2DCFDA assay; mean fluorescence intensity shown. (G) Increased production 651 

of mitochondrial ROS detected by MitoSox Red in mouse myogenic progenitors during aging (n = 3, 652 

upaired t-test). (H) qPCR showing decreased expression of miR-24 in mouse satellite cells during aging. 653 

Expression relative to Snord61 is shown (n = 5-7, Mann-Whitney test). (I) Diagram representing tissue 654 

collection points following TA injury using BaCl2. (J) qPCR of miR-24 in the TA after injury. Expression 655 

relative to Snord61 is shown (n = 3, two-way A.N.O.V.A followed by Tukey’s multiple comparison test 656 

with 95% Confidence Interval). Young: 6-12 weeks old; adult: 6-8 months old; old: 20-24 months old. 657 

(K) Representative images of H&E and WGA staining indicating the extent of muscle damage following 658 

BaCl2 injury of the gastrocnemius muscle from adult and old muscle. Scale bars: 200 µm. For miR-24 659 

qPCR in satellite cells: adult: 1-8 months old; old: 20-24 months old. p-value < 0.05 was considered as 660 

statistically significant (*). Error bars show S.E.M.  661 

Figure 2. miR-24 regulates viability and differentiation of myogenic progenitors during aging. (A, D) 662 

Myogenic progenitors isolated from adult and old mice were transfected with miR-24 or AM24. Cells 663 

transfected with scrambled control were used as control. Scale bars: 300µm. (A) Viability assay shows 664 

viable (green), apoptotic (yellow) and necrotic (red) cells. (B) miR-24 overexpression and 665 

downregulation of its target Prdx6 resulted in significant decrease in % viable cells from old mice.  (C) 666 

MF 20 (anti-myosin heavy chain; green) and DAPI (blue) immunostaining were performed for 667 

myogenic differentiation and nuclei identification, respectively. (D) Overexpression of miR-24 668 

significantly affected the differentiation of myogenic progenitors from adult mice, inhibition of miR-669 

24 target Prdx6 inhibited myogenic differentiation of muscle progenitors from muscle of adult and old 670 

mice, whereas miR-24 inhibition led to improved myogenesis of muscle progenitors from muscle of 671 

adult and old mice. All panels: n = 3-4, One-Way A.N.O.V.A followed by Tukeys multiple comparison 672 

test. Adult: 6 months old; old: 24 months old. p-value < 0.05 was considered as statistically significant 673 

(*p < .05). Error bars show S.E.M. 674 
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Figure 3. miR-24 overexpression and downregulation of its target gene Prdx6 lead to increased 675 

number of senescent cells through increased mitochondrial ROS generation and DNA damage. (A) 676 

Myogenic progenitors isolated were transfected with miR-24 mimic (miR-24) or anti-miR (AM24). Cells 677 

transfected with scrambled control were used as control. SA-βgal staining (B) or fluorescent SA-βgal 678 

staining (C) was performed for the assessment of senescent cells (blue). Scale bars: 300µm. (B, C) miR-679 

24 overexpression and inhibition of Prdx3 resulted in a higher % of senescent cells in the adult or both 680 

mice, respectively; n = 3, One-Way A.N.O.V.A followed by Tukeys). (D) miR-24  and Prdx6 681 

overexpression/inhibition  was associated with increased p53 and p16 expression in myogenic 682 

progenitors from old mice; expression relative to 29S is shown; One-Way A.N.O.V.A followed by 683 

Tukeys. (E) MitoTracker staining of myogenic progenitors from adult and old mice indicates 684 

dysregulation of mitochondrial networks following miR-24 overexpression and Prdx6 downregulation. 685 

(F) Mitosox Red staining indicates increase in mitochondrial ROS production following miR-24 686 

overexpression and Prdx6 downregulation. (G)  Overexpression of miR-24 and inhibition of Prdx6 led 687 

to an increase in the presence of nuclei stained for phosphorylated H2Ax, a marker of DNA damage. 688 

Scale bars: 75µm (H) Quantification of Mitosox Red staining and phosphor-H2Ax staining indicate 689 

increase in ROS generation following miR-24 overexpression and Prdx6 downregulation in myogenic 690 

progenitors from adult and old mice and increase in DNA damage marker in muscle of old mice 691 

following miR-24 overexpression. miR-24 and siPrdx6 expression manipulation did not result in 692 

changes in H2ax expression (qPCR). Adult: 6 months old; old: 24 months old. p-value < 0.05 was 693 

considered as statistically significant (*p < .05;). Error bars show S.E.M. 694 

Figure 4. miR-24 fine-tunes the levels of Prdx6 levels through its target site.  (A) qPCR showing Prdx6 695 

expression in mouse satellite cells during aging. Expression relative to beta-actin is shown. Adult: 1-8 696 

months old. Old: 20-24 months old (n = 5, Mann-Whitney test). (B) Putative miR-24-3p seed sequence 697 

in the 5’ UTR of Prdx6 gene (highlighted in grey). Mutated seed sequence used for 5’UTR 698 

microRNA:mRNA target interaction is shown. Mutation is shown in red. (C) miR-24 directly regulates 699 

the expression of Prdx6. GFP-Prdx6 5’UTR sensor construct containing the wild type or mutated seed 700 

sequence were transfected into C2C12 myoblast cell line and co-transfected with miR-24 or scrambled 701 

control (Scr). The wild type construct transfected with miR-24 mimic shows less GFP fluorescence 702 

intensity compared to the scrambled control, but not in the mutated construct. (Representative data 703 

shown; n = 3, two-tailed unpaired Student’s t-test). (D, E) qPCR showing the expression of Prdx6 after 704 

microRNA mimic or antagomiR (AM24) transfection in primary myogenic progenitors isolated from 705 

adult (D) and old mice (E). Expression relative to 18S is shown. Adult: 6-8 months old; old: 20-24 706 

months old (n = 3-7, Kruskal-Wallis test followed by Dunn’s multiple comparisons test with 95% 707 

Confidence Interval). (F, G) Western blotting indicating changes in PRDX6 levels following miR-24 708 
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overexpression or inhibition suggesting miR-24 fine-tuning the levels of PRDX6 rather than  being a 709 

master regulator of PRDX6 levels. miR-24 overexpression and inhibition or downregulation of PRDX6 710 

had no effect on the levels of antioxidant protein PRDX3, n=3. One-Way A.N.O.V.A followed by Tukey’s 711 

multiple comparison. For all the figures unless stated otherwise: adult: 6 months old; old: 24 months 712 

old. p-value < 0.05 was considered as statistically significant (*p < .05). Error bars show S.E.M. 713 

Figure 5. miR-24 and Prdx6 regulate viability and differentiation of human primary myoblasts. (A, B) 714 

Human primary myogenic progenitor cells isolated from adults were transfected with miR-24 or AM24 715 

or siRNA for Prdx6. Cells transfected with scrambled RNA were used as control (Control). MF 20 (anti-716 

myosin heavy chain; green) and DAPI (blue) immunostaining were performed for myogenic 717 

differentiation and nuclei identification, respectively. Viability assay was performed with ethidium 718 

bromide and acridine orange for the assessment of viable (green), apoptotic (yellow) and necrotic 719 

(red) cells. SA-βgal staining was performed for the assessment of senescent cells (blue). Scale bars: 720 

200µm. (C, D) miR-24 overexpression and downregulation of Prdx6 resulted in decreased number of 721 

viable cells, as well as thinner myotubes containing fewer nuclei (n = 3, One-Way A.N.O.V.A followed 722 

by Tukeys multiple comparison). p-value < 0.05 was considered as statistically significant (*p < .05). 723 

Error bars show S.E.M. Scale bars: 300µm. 724 

Figure 6. miR-24 and its target regulate senescence of human myogenic progenitors through 725 

mitochondrial ROS production.  (A) Human myogenic progenitors isolated were transfected with miR-726 

24 mimic (miR-24) or anti-miR (AM24). Cells transfected with scrambled control were used as control. 727 

SA-βgal staining (B) or fluorescent SA-βgal staining (C) was performed for the assessment of senescent 728 

cells (blue). Scale bars: 300µm. (B) Quantification of senescent cells indicates increase in the 729 

proportion and number of senescent cells following miR-24 overexpression and downregulation of 730 

Prdx6 expression. (C) MitoTracker Red staining indicates changes in mitochondrial morphology 731 

following miR-24 overexpression and downregulation of siPrdx6 levels. (D, F) Mitosox Red staining 732 

indicates increased mitochondrial ROS levels following miR-24 overexpression and downregulation of 733 

Prdx6 expression. Scale bars: 75µm. (E, F) No significant changes were detected in DNA damage 734 

marker, phosphorylated H2Ax. (G) Western blot indicating miR-24 fine-tuning the expression of Prdx6 735 

rather than being a master regulator of its expression. No changes were detected in the levels of 736 

antioxidant protein levels: PRDX3 following changes in miR-24 or Prdx6 expression. One-way 737 

A.N.O.V.A. followed by Tukey’s multiple comparison test with 95% Confidence Interval). p-value < 0.05 738 

was considered as statistically significant (*p < .05). Error bars show S.E.M.  739 

Page 32 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

160x204mm (300 x 300 DPI) 

Page 33 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

381x444mm (300 x 300 DPI) 

Page 34 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

406x579mm (300 x 300 DPI) 

Page 35 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

160x239mm (300 x 300 DPI) 

Page 36 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

151x91mm (300 x 300 DPI) 

Page 37 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

136x112mm (300 x 300 DPI) 

Page 38 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

49x56mm (600 x 600 DPI) 

Page 39 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

 

Page 40 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 

 
Figure S3. 

 

Page 41 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review  
Figure S4. 

Page 42 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

 
Figure S5. 
 

Page 43 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

Figure S6. 

Page 44 of 50

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964 4100

Aging Cell



For Peer Review

Supplementary figure legends:

Figure S1. Illustration showing the isolation of quiescent satellite cells by FACS (fluorescence activated 

cell sorting). The satellite cells population was positive for CD34, highly-positive for alpha7-integrin, 

and negative for Sca1, CD31 and CD45. 

Figure S2. (A) qPCR showing the expression of miR-24 after microRNA mimic or antagomiR (AM24) 

transfection in primary myogenic progenitors isolated from adult and old mice. Expression relative to 

Snord61 is shown (n = 3-7, adult: 6-8 months old; old: 20-24 months old). F-test compared to control. 

p-value < 0.05 was considered as statistically significant (# p < .05; # # p < .01; # # # p < .001; # # # # p < 

.0001). Error bars show S.E.M. (B) qPCR showing Prdx6 expression in mouse tibialis anterior muscle 

during aging. Expression relative to ß-2 microglobulin is shown (n = 3-4, adult: 6-8 months old; old: 20-

24 months old). Mann-Whitney test (* < .05; **p < .01; ***p < .001). Error bars show S.E.M.

Figure S3. miR-24 regulates function of myogenic progenitors during aging. (A) Viability assay shows 

viable (green), apoptotic (yellow) and necrotic (red) cells. miR-24 overexpression resulted in decreased 

viable cells from both adult and old mice. miR-24 inhibition also affected viability of cells isolated from 

old mice (n = 6-7, two-tailed unpaired Student’s t-test compared to control). (B) MF 20 (anti-myosin 

heavy chain; green) and DAPI (blue) immunostaining were performed for myogenic differentiation and 

nuclei identification, respectively. miR-24 overexpression resulted in decreased myotube diameter 

whereas miR-24 inhibition resulted in bigger myotubes in myogenic progenitors from old mice 

compared to control (n = 3-4, two-tailed unpaired Student’s t-test compared to control). (C) SA-βgal 

staining performed on replicatively senescent cells from adult and old mice was performed for the 

assessment of senescent cells (blue). Scale bars: 200µm. Changes in miR-24 levels affected the 

proportion of senescent cells, (n = 4-6, two-tailed unpaired Student’s t-test compared to control). (D) 

Ki67 staining of primary myogenic progenitors demonstrates no difference in cell proliferation 

following miR-24 overexpression or inhibition. Scale bars: 200µm. n = 4-7; two-tailed unpaired Student 

t-Test. (E) The expression of senescence-associated genes was affected following miR-24 

overexpression in myogenic progenitors from old mice. (n = 3-7, Kruskal-Wallis test followed by Dunn’s 

multiple comparisons test with 95% Confidence Interval; expression relative to 18S is shown). All 

panels: Cells transfected with scrambled RNA were used as control group (Control); adult: 6-8 months 

old; old: 20-24 months old; p-value < 0.05 was considered as statistically significant (*p < .05; **p < 

.01; ***p < .001). Error bars show S.E.M. 
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Figure S4. miR-24 regulates differentiation, viability and senescence of human primary myogenic 

progenitors. Human primary myogenic progenitor cells isolated from adults were transfected with 

miR-24 or AM24. Cells transfected with the empty vector or scrambled control were used as control 

(Control). (A) MF 20 (anti-myosin heavy chain; green) and DAPI (blue) immunostaining were 

performed for myogenic differentiation and nuclei identification, respectively. (B) Viability assay was 

performed with ethidium bromide and acridine orange for the assessment of viable (green), apoptotic 

(yellow) and necrotic (red) cells. (C) SA-βgal staining was performed for the assessment of senescent 

cells (blue). Scale bars: 200µm. (D) Ki67 staining indicates no effects of miR-24 on human myoblast 

proliferation. miR-24 overexpression resulted in thinner myotubes, less viability and increased 

number of senescent cells (n = 3-4, two-tailed unpaired Student’s t-test compared to Control group). 

p-value < 0.05 was considered as statistically significant (*p < .05; **p < .01; ***p < .001). Error bars 

show S.E.M.

Figure S5. Negative control for MitoSox Red staining and Mitosox Red staining in cells not treated or 

treated with H2O2 to test the working concentration od MitoSox Red.

Figure S6. Original western blot images.

Supplementary table 1: Age and gender of the patients donating a muscle biopsy for the isolation of 
human primary myogenic progenitor cells. 

Donor ID Age (years) Gender BMI
Donor 1 32 Female <25
Donor 2 34 Female <25
Donor 3 32 Female <25
Donor 4 31 Female <25
Donor 5 22 Female <25
Donor 6 35 Female <25

Supplementary table 2: Antibodies used for the isolation of satellite cells by FACS.

FACS Conjugated antibody Company
Catalogue 
number

Dilution
FACS Aria 

filter
Anti-CD31-PE: PE Rat Anti-Mouse CD31. 
Clone: MEC 13.3. Isotype: Rat IgG2a, κ. 

0.2 mg/ml

BD Biosciences 
PharmingenTM

561073 1:1333 575/26 (PE)

Anti-CD-45/PE: PE Rat Anti-Mouse CD45. 
Clone: 30-F11. Isotype: Rat IgG2b, κ. 0.2 

mg/ml

(BD Biosciences 
PharmingenTM

553081 1:1333 575/26 (PE)

Anti-Sca1/FICT: FICT Rat Anti-mouse Ly-
6A/E. Clone: E13-161.7. Isotype: Rat 

IgG2a, κ. 0.5 mg/ml

BD Biosciences 
PharmingenTM

553335 1:1333 530/30 (FITC)
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Anti-Alpha 7 Integrin 647. Clone: R2F2. 
Isotype: Rat IgG2b. 1.0 mg/ml

AbLab N/A 1:2000 660/20 (APC)

BV421 Rat Anti-Mouse CD34 Clone 
RAM34 (RUO). 0.2 mg/ml

BD Biosciences 
PharmingenTM

562608 1:1000 450/40 
(Pacific Blue)

Fixable Viability Dye eFluor 780 (label 
dead cells)

Affimetrix 
eBiosciences

65-0865-
14

1:4000
780/60 (APC-

Cy7)

Supplementary table 3: List of primers, oligos and antibodies used for the study.

Gene Company Organism Sequence (5’-3’)/ Cat. Number

Hs_SNORD61_11 miScript Primer 

Assay

Qiagen Human, 

mouse

MS00033705

Hs_miR-24_1 miScript Primer Assay Qiagen Human, 

mouse

MS00006552. Targets mature miR: 

UGGCUCAGUUCAGCAGGAACAG

Beta-actin Forward Sigma-Aldrich Mouse GATCAAGATCATTGCTCCTCCTG

Beta-actin Reverse Sigma-Aldrich Mouse AGGGTGTAAAACGCAGCTCA

18S rRNA Forward Sigma-Aldrich Mouse CGGCTACCACATCCAAGGAAGG

18S rRNA Reverse Sigma-Aldrich Mouse CCCGCTCCCAAGATCCAACTAC

Beta-2 microglobulin Forward Sigma-Aldrich Mouse GGAGAATGGGAAGCCGAACA

Beta-2 microglobulin Reverse Sigma-Aldrich Mouse TCTCGATCCCAGTAGACGGT

p16 Forward Sigma-Aldrich Mouse TGGTCACTGTGAGGATTCAGC

p16 Reverse Sigma-Aldrich Mouse GTTGCCCATCATCATCACCTGG

p21 Forward Sigma-Aldrich Mouse ATCCAGACATTCAGAGCCACAG

p21 Reverse Sigma-Aldrich Mouse TCGGACATCACCAGGATTGG

Prdx6 Forward Sigma-Aldrich Mouse/

Human

TTGATGATAAGGGCAGGGAC

Prdx6 Reverse Sigma-Aldrich Mouse/ 

Human

CTACCATCACGCTCTCTCCC

Tumor protein p53 Forward Sigma-Aldrich Mouse CACGTACTCTCCTCCCCTCAAT

Tumor protein p53 Reverse Sigma-Aldrich Mouse AACTGCACAGGGCACGTCTT

mPRDX6-202 5’UTR Forward Sigma-Aldrich Mouse GCCCCGCCCACTCGGCCAGC

mPrdx6-202 5’UTR Reverse Sigma-Aldrich Mouse AGCAACCCTCCGGGCATGGC

mPrdx6-202 5’UTR WT Sigma-Aldrich Mouse GCCCCGCCCACTCGGCCAGCACTGA

TCTAGGTCTCCGCAGGAGCCCGC

CCGCTGCTCACTGCTGCGGCTGCGC

CTCCTTGTTCTCAGCGTCACCAC

TGCCGCCATGCCCGGAGGGTTGCT
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mPrdx6-202  5’UTR 24 MUT Sigma-Aldrich Mouse GCCCCGCCCACTCGGCCAGCACTGA

TCTAGGTCTCCGCAGGATCCCGC

CCGCTGCTCACTGCTGCGGCTGCGC

CTCCTTGTTCTCAGCGTCACCAC

TGCCGCCATGCCCGGAGGGTTGCT

Bcl-2 Forward Sigma-Aldrich Mouse CTGCAAATGCTGGACTGAAA

Bcl-2 Reverse Sigma-Aldrich Mouse TCAGGAGGGTTTCCAGATTG

H2ax Forward Sigma-Aldrich Mouse GGCCTGTGGACAAGAGTTCTAT

H2ax Reverse Sigma-Aldrich Mouse GCCCATTAAATCTCCCCACT

P53 Forward Sigma-Aldrich Mouse CACGTACTCTCCTCCCCTCAAT

P53 Reverse Sigma-Aldrich Mouse AACTGCACAGGGCACGTCTT

Bcl-2 Forward Sigma-Aldrich Human TCGCCCTGTGGATGACTGA

Bcl-2 Reverse Sigma-Aldrich Human CAGAGACAGCCAGGAGAAATCA

H2ax Forward Sigma-Aldrich Human CATGTCGGGCCGCGGCAA

H2ax Reverse Sigma-Aldrich Human GTGGCGCTGGTCTTCTTG

P16 Forward Sigma-Aldrich Human GAAGGTCCCTCAGACATCCCC

P16 Reverse Sigma-Aldrich Human CCCTGTAGGACCTTCGGTGAC

P21 Forward Sigma-Aldrich Human GGCAGACCAGCATGACAGATTTC

P21 Reverse Sigma-Aldrich Human CGGATTAGGGCTTCCTCTTGG

S29 Forward Sigma-Aldrich Mouse/

Human

ATGGTCACCAGCAGCTCTA

S29 Reverse Sigma-Aldrich Mouse/

Human

GTATTTGCGGATCAGACCGCT

Supplementary table 4: Table of reagents used for the experiments.

Product Company Catalogue number

Barium chloride Sigma-Aldrich 202738

AllStars Negative Control siRNA Print 

miRIDIAN Scr control

Qiagen 

Dharmacon

1027280 

(discontinued)

IN-122262-00-70

Syn-mmu-miR-24-3p Qiagen MSY0000219 

Anti-mmu-miR-24-3p

Anti-miR-24-3p

Qiagen

Dharmacon

MIN0000219 

(discontinued)

IH-122261-00-70

Mouse Prdx6 siRNA ThermoFisher Scientific s62375 (discontinued), 

s62376
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Human Prdx6 siRNA ThermoFisher Scientific s18428

s18429

Lipofectamine 2000 ThermoFisher Scientific 11668019

MF20 primary antibody. Antigen: myosin, 

sarcomere (MHC). 211 ug/ml

Developmental Studies 

Hybridoma Bank

MF20-c 2ea

Rabbit mAb to Ki67 [SP6]. Abcam ab16667

Goat anti-Mouse IgG (H+L) Secondary Antibody, 

Alexa Fluor 488 conjugate.

Invitrogen A-11029

Goat anti-Rabbit IgG (H+L) Secondary Antibody, 

Alexa Fluor 488 conjugate.

ThermoFisher Scientific A-11034

DAPI (4',6-Diamidino-2-Phenylindole, 

Dihydrochloride)

Sigma-Aldrich D9542

Senescence β-Galactosidase Staining Kit

Cell Event Cell senescence kit

Cell Signaling Technology

Thermo Fisher

9860

C10850

Acridine Orange hydrochloride solution, 10 

mg/mL in H2O

Sigma-Aldrich A8097

Ethidium bromide solution. BioReagent, for 

molecular biology, 10 mg/mL in H2O

Sigma-Aldrich E1510

Methanol Fisher M/4000/PC17

PBS (immunostaining) Sigma-Aldrich P4417

Tween-20 Sigma-Aldrich P1379

Wheat Germ Agglutinin (WGA), Fluorescein Vector Laboratories FL-1021

Fluoromount ThermoFisher 00-4958-02

DAPI (4',6-Diamidino-2-Phenylindole, 

Dihydrochloride). 1mg/ml

Sigma-Aldrich D9542

miRNeasy Mini Kit Qiagen 217004

TRIzol Reagent Life Technologies 15596-018

Chloroform:Isoamyl alcohol 24:1 Sigma-Aldrich C0549

Isopropanol Sigma-Aldrich I9516

RNAse-free water Sigma-Aldrich 3098

Sodium acetate Sigma-Aldrich S2889

Nanodrop 2000 ThermoFisher Scientific N/A

Superscript II Reverse Transcriptase Life Technologies 18064

Random Hexamers (50 μM) ThermoFisher N8080127

25X dNTP Mix (100 mM) ThermoFisher 4368814

RiboLock RNase Inhibitor (40 U/μL) ThermoFisher EO0381
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miRScript RT II Qiagen 218161

miRScript SybrGreen PCR Kit Qiagen 218073

T100 Thermal Cycler Bio-Rad 1861096

CFX Connect Real-Time PCR Detection System Bio-Rad 1855201

RNU-6 qPCR primer Qiagen MS00033740

Snord-61 qPCR primer Qiagen MS00033705

miR-24_1 miScript Primer Assay Qiagen MS00006552

Select agar Sigma-Aldrich A5054

MyTaq Red Mix Bioline BIO-25043

GeneJET Genomic DNA Purification Kit Thermo Scientific K0721

One Shot TOP10 Chemically Competent E. coli Invitrogen C404010

SYBR Safe DNA Gel Stain Invitrogen S33102

DNA Gel Loading Dye (6X) Thermo Scientific R0611

UltraPure Agarose Invitrogen 16500500

GFP Tag Antibody, ABfinity Rabbit Monoclonal ThermoFisher Scientific G10362

CM-H2DCFDA (General Oxidative Stress 

Indicator)

Invitrogen C6827

FLUOstar OPTIMA microplate reader BMG Labtech N/A

Hydrogen peroxide solution 30 % (w/w) in H2O, 

contains stabilizer

Sigma-Aldrich H1009

1x RBC (Red Blood Cell) Lysis Buffer eBioscience 00-4333-57

FACS Aria III Flow Cytometer BD Biosciences N/A

MitoSox Red Thermo Fisher M36008

MitotTracker Red CM-H2Xros Thermo Fisher M7513

HCS DNA damage kit Thermo Fisher H10292

C1 confocal laser scanning microscope system. 

10x magnification. 

Nikon N/A

Axiovert 200 inverted microscope. 10x 

magnification. 

Carl Zeiss N/A

EVOS M5000 Thermo Fisher N/A

EVOS M7000 Thermo Fisher N/A

SOD1 Abcam

HSP70 Abcam Ab181606
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