48 research outputs found

    本震の破壊形状と余震が起こる断層面の分布との幾何的関係および因果関係 : 1995年兵庫県南部地震

    Get PDF
    要旨pdfファイル:タイトル「(本震の破壊形状と余震が起こる断層面の分布との幾何学的関係および因果関係:1995年兵庫県南部地震)」本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・課程博士博士(理学)甲第7667号理博第2052号新制||理||1092(附属図書館)UT51-99-G261京都大学大学院理学研究科地球惑星科学専攻(主査)教授 中西 一郎, 教授 尾池 和夫, 教授 安藤 雅孝学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDFA

    Investigating the role of the Itoigawa-Shizuoka tectonic line towards the evolution of the Northern Fossa Magna rift basin

    Get PDF
    AbstractThe Itoigawa-Shizuoka tectonic line (ISTL) fault system is considered to have one of the highest probabilities for a major inland earthquake occurrence in the whole of Japan. It is a complex fault system with the dip directions of the local fault segments changing from north to south between an east-dipping low-angle thrust fault, a strike slip fault and a west-dipping thrust fault. The tectonic relations between the different parts of the fault system and the surrounding geological units are yet to be fully explained. This study aims to reveal the juncture of the northern and central parts of the ISTL and investigate its contribution towards the shaping of the Northern Fossa Magna rift basin. We conducted 3 deployments of 1 or 2 linear arrays of seismic stations across the central and northern ISTL regions and observed local micro-earthquakes for a period of 3 years. Each deployment recorded continuous waveform data for approximately 3 months. Using arrival times of 1193 local earthquakes, we jointly determined earthquake locations and a 3D velocity model, applying the tomography method. We were able to image the regional crustal structures from the surface to a depth of 20km with a spatial resolution of 5km. Subsequently, we used the obtained 3D velocity model to relocate the background local seismicity from 2003 to 2009. The juncture of the northern and central parts of the ISTL was well constrained by our results. The depth extension of the northern parts of the ISTL fault segments follows the bottom of the Miocene Northern Fossa Magna rift basin (NFM) and forms an east-dipping low-angle fault. In contrast, the central parts of the ISTL fault segments are estimated to lie along the eastern boundary of the Matsumoto basin forming an oblique strike slip fault (Fig. 1)

    Shallow Subsurface Structure in the Hualien Basin and Relevance to the Damage Pattern and Fault Rupture during the 2018 Hualien Earthquake

    Get PDF
    The 2018 M[w] 6.4 Hualien earthquake generated a large peak-to-peak velocity of over 2  m/s, with a period of 3 s at the south end of the Milun fault, which resulted in the collapse of five buildings. To investigate the shallow subsurface soil structure and evaluate possible effects on the ground motion and building damage, we performed microtremor measurements in the Hualien basin. Based on the velocity structure jointly inverted from both Rayleigh-wave dispersion curves and microtremor horizontal-to-vertical spectral ratio data, we found that the shallow subsurface structure generally deepens from west to east. Close to the Milun fault, the structure becomes shallower, which is consistent with faulting during the 2018 earthquake and the long-term tectonic displacement. There is no significant variation for the site conditions in the north–south direction that can explain the large peak ground velocity in the south. As a result of the dense measurements in the heavily damaged area, where three high-rise buildings totally collapsed, these locations have the average S-wave velocity of the upper 30 m (AVs₃₀) values and are relatively high compared to the more distant area from the Meilun River. This is somewhat unusual, because lower AVs₃₀ values indicating softer ground conditions are expected close to the river. We did not find any characteristic subsurface soil structure that may contribute to the building collapses. The large 3 s pulse was probably generated by source effects, rather than subsurface soil amplification

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Microtremor data

    No full text
    <p>Observed microtremor waveforms obtained with a linear seismic array.</p> <p> </p

    text.tgz

    No full text
    <div>Text data of microtremor waveform at three sites <br></div><div><div><div><br></div></div></div
    corecore