446 research outputs found

    Enhanced co-solubilities of Ca and Si in YAG (Y3Al5O12)

    Get PDF
    General garnet structure (Ia3-d) is a forgiving host and can accommodate cations of varying sizes and valence states. Studies on highly yttrium doped alumina ceramics with Ca and Si contamination indicated that YAG precipitates in the ceramic had a propensity to allow simultaneous incorporation of small amounts of Ca and Si impurities in their structure. In this study, using chemical synthesis techniques it was shown that YAG can accommodate up to approximately 8 cation % Ca+2 and Si+4 (i.e. Ca+2/Y+3 and Si+4/Y+3) if they are incorporated together. Equilibrium conditions are established by calcining samples at 900 C for 2 hours and cooling the samples to room temperature in the furnace. Disappearing-phase method and energy dispersive X-ray spectroscopy (EDS) were used to determine solubility and co-solubility limits. Beyond the solubility limit phase separation occurred and three crystalline yttrium aluminate phases (YAG, YAP (yttrium aluminate perovskite, YAlO3), YAM (yttrium aluminate monoclinic, Y4Al2O9)) were observed. It is believed that the excess Ca and Si above co-solubility limit precipitate out in the form of an x-ray amorphous anorthite-like glass in the system

    Generation of interleukin-8 by plasmin from AVLPR-interleukin-8, the human fibroblast-derived neutrophil chemotactic factor

    Get PDF
    AbstractPlasmin mainly cleaved the Arg5-Ser6 bond of Arg-Val-Leu-Pro-Arg-interleukin-8 (AVLPR-IL-8) produced by human dermal fibroblasts, which resulted in the conversion of AVLPR-IL-8 to IL-8 and the inactive pentapeptide, though a minor cleavage of AVLPR-IL-8 by plasmin at Lys8-Glu9 bond occurred

    Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics

    Get PDF
    We identify and analyze dephasing mechanisms that broaden the optical transitions of rare-earth ions in randomly oriented transparent ceramics. The study examines the narrow F_0^7 ↔ D_0^5 transition of Eu^(3+) dopants in a series of Y_2O_3 ceramic samples prepared under varying conditions. We characterize the temperature and magnetic field dependence of the homogeneous linewidth, as well as long-term spectral diffusion on time scales up to 1 s. The results highlight significant differences between samples with differing thermal treatments and Zr^(4+) additive concentrations. In particular, several distinct magnetic interactions from defect centers are observed, which are clearly distinguished from the broadening due to interactions with two-level systems and phonons. By minimizing the broadening due to the different defect centers, linewidths of the order of 4 kHz are achieved for all samples. The linewidths are limited by temperature-dependent interactions and by an interaction that is yet to be identified. Although the homogeneous linewidth can be narrowed further in these ceramic samples, the broadening is now comparable to the linewidths achieved in rare-earth-ion–doped single crystals. Thus, this work emphasizes the usefulness of studying ceramics to gain insights into dephasing mechanisms relevant to single crystals and suggests that ceramics may be an interesting alternative for applications in classical and quantum information processing

    Étude du frittage non-conventionnel de céramiques de type YAG:Nd en présence d’ajout de silice

    Get PDF
    L’objectif de cette étude était de cerner l’influence du procédé de frittage non conventionnel employé pour la mise en forme des pièces (frittage SPS ou post-frittage HIP) sur l’activation des processus densifiants. Il s’avère qu’un traitement SPS des poudres initiales permet d’abaisser la température de début de frittage et conduit dans certaines conditions à des pièces translucides ou transparentes. L’influence de la silice, introduit comme ajout de frittage, et du néodyme, introduit comme dopant, est également discutée dans ce travail. Le post-frittage HIP, quant à lui, permet l’élimination de la porosité résiduelle dans les échantillons, ce qui conduit à la transparence des pièces réalisées

    Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Full text link
    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filteringThis work was supported by the ANR projects RAMACO (No. 12-BS08-0015-01) and DISCRYS (No. 14-CE26-0037-01), Idex No. ANR-10-IDEX-0001-02 PSL⋆, and Nano’K project RECTUS. C.W.T. and R.L.C. acknowledge support from National Science Foundation (NSF) Award Nos. CHE-1416454 and PHY-1415628 and M.O.R. and L.E.B. from Project No. MAT2013- 43301-R of the Spanish Ministry of Economy and Competitiveness (MINECO) and Comunidad Autónoma de Madrid under Grant No. S2013/MIT-274

    Narrow inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic

    Full text link
    Inhomogeneous and homogeneous linewidth are reported in a Eu3+ doped transparent Y2O3 ceramic for the 7F 0-5D0 transition, using high-resolution coherent spectroscopy. The 8.7-GHz inhomogeneous linewidth is close to that of single crystals, as is the 59-kHz homogeneous linewidth at 3 K (T2 = 5.4 μs). The homogeneous linewidth exhibits a temperature dependence that is typical of a crystalline environment, and additional dephasing observed in the ceramic is attributed to magnetic impurities or defects introduced during the synthesis process. The absence of Eu3+segregation at the grain boundaries, evidenced through confocal microfluorescence, further indicates that the majority of Eu3+ions in the ceramic experience an environment comparable to a single crystal. The obtained results suggest that ceramic materials can be competitive with single crystals for applications in quantum information and spectral hole burning devices, beyond their current applications in lasers and scintillatorsThis work was supported by National Science Foundation under award No. PHY-1212462, the European Union FP7 project QuRep (247743), the Spanish Ministry of Economy and Competitiveness (MAT2010-17443) and Comunidad de Madrid (S-2009/MAT-1756

    High-Resolution Optical Line Width Measurements as a Material Characterization Tool

    Get PDF
    We present a case study on Eu^(3+)-doped Y_2O_3 transparent ceramics in which high-resolution laser spectroscopy is used as a material characterization tool. By comparing the results from coherent and incoherent optical spectroscopy with other characterization methods, we show that optical techniques can deliver supplementary information about the local environment of the activator ions in materials. Thus, high-resolution spectroscopy may be of interest for the investigation of a wider range of rare earth doped optical materials beyond materials studied for quantum information technology. The refinement of optical spectroscopy for the study of narrow optical transitions in rare earth ion single crystals has demonstrated that these techniques are extremely sensitive tools for probing the local environment of the rare earth ion. These techniques, such as photon echo experiments, have been important in developing materials for quantum information technology and spectral filtering applications. Here, we apply these techniques to transparent ceramic samples and compare the results with information gained from conventional material characterization techniques. Our present study demonstrates the high sensitivity of laser spectroscopic methods to microstructural strain and the presence of defects. In particular, the sensitivity is sufficient to detect small changes introduced by different thermal treatments in nominally equivalent materials. The results of our work show that it is possible to relate high-resolution optical measurements to defects and microstructural strain

    Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics

    Get PDF
    We identify and analyze dephasing mechanisms that broaden the optical transitions of rare-earth ions in randomly oriented transparent ceramics. The study examines the narrow F_0^7 ↔ D_0^5 transition of Eu^(3+) dopants in a series of Y_2O_3 ceramic samples prepared under varying conditions. We characterize the temperature and magnetic field dependence of the homogeneous linewidth, as well as long-term spectral diffusion on time scales up to 1 s. The results highlight significant differences between samples with differing thermal treatments and Zr^(4+) additive concentrations. In particular, several distinct magnetic interactions from defect centers are observed, which are clearly distinguished from the broadening due to interactions with two-level systems and phonons. By minimizing the broadening due to the different defect centers, linewidths of the order of 4 kHz are achieved for all samples. The linewidths are limited by temperature-dependent interactions and by an interaction that is yet to be identified. Although the homogeneous linewidth can be narrowed further in these ceramic samples, the broadening is now comparable to the linewidths achieved in rare-earth-ion–doped single crystals. Thus, this work emphasizes the usefulness of studying ceramics to gain insights into dephasing mechanisms relevant to single crystals and suggests that ceramics may be an interesting alternative for applications in classical and quantum information processing

    Three-Dimensional Grain Boundary Spectroscopy in Transparent High Power Ceramic Laser Materials

    Full text link
    Using confocal Raman and fluorescence spectroscopic imaging in 3-dimensions, we show direct evidence for Nd3+-Nd3+ interactions across grain boundaries (GBs) in Nd3+:YAG laser ceramics. It is clearly shown that Nd3+ segregation takes place at GBs leading to self-fluorescence quenching which affects a volume fraction as high as 20%. In addition, we show a clear trend of increasing spatial inhomogeneities in Nd3+ concentration when the doping levels exceeds 3 at%, which is not detected by standard spectrometry techniques. These results could point the way to further improvements in what is already an impressive class of ceramic laser materials.Comment: 8 pages including Figures. submitted to Optics Express (Nov 07
    corecore