108 research outputs found

    The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization

    Get PDF
    A “crystal hotel” microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals

    Rapid Screening of Calcium Carbonate Precipitation in the Presence of Amino Acids: Kinetics, Structure, and Composition

    Get PDF
    Soluble additives are widely used to control crystallization, leading to a definition of properties including size, morphology, polymorph, and composition. However, because of the number of potential variables in these experiments, it is typically extremely difficult to identify reaction conditions—as defined by solution compositions, temperatures, and combinations of additives—that give the desired product. This article introduces a high-throughput methodology which addresses this challenge and enables the streamlined preparation and characterization of crystalline materials. Using calcium carbonate precipitated in the presence of selected amino acids as a model system, we use well plates as microvolume crystallizers, and an accurate liquid-handling pipetting workstation for sample preparation. Following changes in the solution turbidity using a plate reader delivers information about the reaction kinetics, while semiautomated scanning electron microscopy, powder X-ray diffraction, and Raman microscopy provide structural information about the library of crystalline products. Of particular interest for the CaCO3 system is the development of fluorescence-based protocols which rapidly evaluate the amounts of the additives occluded within the crystals. Together, these methods provide a strategy for efficiently screening a broad reaction space, where this can both accelerate the ability to generate crystalline materials with target properties and develop our understanding of additive-directed crystallization

    A lathe system for micrometre-sized cylindrical sample preparation at room and cryogenic temperatures

    Get PDF
    A simple two-spindle based lathe system for the preparation of cylindrical samples intended for X-ray tomography is presented. The setup can operate at room temperature as well as under cryogenic conditions, allowing the preparation of samples down to 20 and 50 µm in diameter, respectively, within minutes. Case studies are presented involving the preparation of a brittle biomineral brachiopod shell and cryogenically fixed soft brain tissue, and their examination by means of ptychographic X-ray computed tomography reveals the preparation method to be mainly free from causing artefacts. Since this lathe system easily yields near-cylindrical samples ideal for tomography, a usage for a wide variety of otherwise challenging specimens is anticipated, in addition to potential use as a time- and cost-saving tool prior to focused ion-beam milling. Fast sample preparation becomes especially important in relation to shorter measurement times expected in next-generation synchrotron sources

    Ptychographic X-ray tomography reveals additive zoning in nanocomposite single crystals

    Get PDF
    Single crystals containing nanoparticles represent a unique class of nanocomposites whose properties are defined by both their compositions and the structural organization of the dispersed phase in the crystalline host. Yet, there is still a poor understanding of the relationship between the synthesis conditions and the structures of these materials. Here ptychographic X-ray computed tomography is used to visualize the three-dimensional structures of two nanocomposite crystals – single crystals of calcite occluding diblock copolymer worms and vesicles. This provides unique information about the distribution of the copolymer nano-objects within entire, micron-sized crystals with nanometer spatial resolution and reveals how occlusion is governed by factors including the supersaturation and calcium concentration. Both nanocomposite crystals are seen to exhibit zoning effects that are governed by the solution composition and interactions of the additives with specific steps on the crystal surface. Additionally, the size and shape of the occluded vesicles varies according to their location within the crystal, and therefore the solution composition at the time of occlusion. This work contributes to our understanding of the factors that govern nanoparticle occlusion within crystalline materials, where this will ultimately inform the design of next generation nanocomposite materials with specific structure/property relationships

    Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    Get PDF
    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates

    3D Visualisation of Additive Occlusion and Tunable Full-Spectrum Fluorescence in Calcite

    Get PDF
    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallisation processes. There is growing evidence that these additives are often occluded within the crystal lattice, where this promises an elegant means of creating nanocomposites and tuning physical properties. Here, we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy was then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required

    Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling

    Full text link
    This paper presents a numerical study analyzing the effect of pulsating flow in a variable geometry radial inflow turbine. The turbine behavior is analyzed under isentropic pulses, which are similar to those created by a rotating disk in a turbocharger test rig. Three different pulse frequencies (50, 90 and 130 Hz) and two pulse amplitudes (100 and 180 kPa) were considered. Turbine flow was studied throughout the pressure pulsation cycles in a wide range of off-design operating conditions, from low pressure ratio flow detachment to high pressure ratio choked flow. An overall analysis of the phasing of instantaneous mass flow and pressure ratio was first performed and the results show the non-quasi-steady behavior of the turbine as a whole as described in the literature. However, the analysis of the flow in the different turbine components independently gives a different picture. As the turbine volute has greater length and volume than the other components, it is the main source of non-quasi-steadiness of the turbine. The stator nozzles cause fewer accumulation effects than the volute, but present a small degree of hysteretic behavior due to flow separation and reattachment cycle around the vanes. Finally, the flow in the moving rotor behaves as quasi-steady, as far as flow capacity is concerned, although the momentum transfer between exhaust gas and blades (and thus work production and thermal efficiency) is affected by a hysteretic cycle against pressure ratio, but not if blade speed ratio is considered instead. A simple model to simulate the turbine stator and rotor is proposed, based on the results obtained from the CFD computations.The authors are indebted to the Spanish Ministerio de Economia y Competitividad through Project TRA 2010-16205. The proof-reading of the paper was funded by the Universitat Politecnica de Valencia, Spain.Galindo, J.; Fajardo, P.; Navarro GarcĂ­a, R.; GarcĂ­a-Cuevas GonzĂĄlez, LM. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy. 103:116-127. https://doi.org/10.1016/j.apenergy.2012.09.013S11612710

    Mechanical adaptation of brachiopod shells via hydration-induced structural changes.

    Get PDF
    The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration

    A role for diatom-like silicon transporters in calcifying coccolithophores

    Get PDF
    Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules
    • …
    corecore