17 research outputs found

    Structural basis of proton-coupled potassium transport in the KUP family

    Get PDF
    Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins

    Conformational Plasticity Underlies Membrane Fusion Induced by an HIV Sequence Juxtaposed to the Lipid Envelope

    Get PDF
    Envelope glycoproteins from genetically-divergent virus families comprise fusion peptides (FPs) that have been posited to insert and perturb the membranes of target cells upon activation of the virus-cell fusion reaction. Conserved sequences rich in aromatic residues juxtaposed to the external leaflet of the virion-wrapping membranes are also frequently found in viral fusion glycoproteins. These membrane-proximal external regions (MPERs) have been implicated in the promotion of the viral membrane restructuring event required for fusion to proceed, hence, proposed to comprise supplementary FPs. However, it remains unknown whether the structure-function relationships governing canonical FPs also operate in the mirroring MPER sequences. Here, we combine infrared spectroscopy-based approaches with cryo-electron microscopy to analyze the alternating conformations adopted, and perturbations generated in membranes by CpreTM, a peptide derived from the MPER of the HIV-1 Env glycoprotein. Altogether, our structural and morphological data support a cholesterol-dependent conformational plasticity for this HIV-1 sequence, which could assist cell-virus fusion by destabilizing the viral membrane at the initial stages of the processThis study was supported by the Spanish MCIU (Grants RTI2018-095624-B-C21; MCIU/AEI/FEDER, UE to JLN and BA; and PID2019-111096GA-I00; MCIU/AEI/FEDER, UE to AC) and Basque Government (Grant: IT1196-19). Technical assistance from MI Collado and M Carril with 31P-NMR measurements and data processing is greatly acknowledge

    Overview Of Data Over Digital Subscrieber Line In Czech Republic.

    Get PDF
    Import 22/07/2015Tato bakalářská práce je zaměřena na rozbor technologie ADSL a to, jak je využívána a nabízena vybranými poskytovateli v České republice k užívání veřejným sektorem. V teoretické části pojednává o technologii ADSL a jejích vývojových verzích. Dále se zabývá řešením přípojky a vlivů rušení na vedení těchto přípojek. Hlavní částí práce je část praktická, ta se zabývá průzkumem poskytovatelů v České republice. Konkrétně využitím digitálních účastnických smyček poskytovateli, jejich nabídkou ADSL služeb pevného připojení k internetu a také doplňkových služeb a poplatků s pevným připojením spojených. Poslední částí práce je analýza možností připojení těchto služeb na konkrétní přípojku. Obsah této práce má napomoci běžným uživatelům k pochopení dané problematiky spojené se zřízením a výběrem ADSL služeb. Prostředky k řešení praktické části práce jsou především komunikace s poskytovateli ADSL služeb a získávání informací.This bachelor thesis is focused on the analysis of the technology ADSL as it is used in the public sector and offered by chosen providers in Czech Republic. In the theoretical part, it refers to the technology ADSL and its developmental versions. Furthermore, it examines the connection solution and the influence of interruption on conducting these connections. The main part of the thesis is the practical part which undertakes the research of providers in Czech Republic. Namely, it explores use of digital subscriber loops by providers, theirs ADSL service offers of the stable internet connection and its complementary services and charges. The final part of the thesis is the connection analysis of these complementary services on the specific connection. The content of this thesis should provide help to common users to understand given issues related to the selection and setting up ADSL services. Tools used for the practical part are particularly communication with ADSL service providers and acquiring appropriate information.440 - Katedra telekomunikační technikyvýborn

    Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD

    Get PDF
    AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (??loop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidD??loop phenocopied a L. pneumophila ??sidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection

    Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation

    No full text
    Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating K+ ions uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation

    Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation

    Get PDF
    Abstract Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation

    Native mass spectrometry goes more native:Investigation of membrane protein complexes directly from SMALPs

    Get PDF
    Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.</p

    Structural basis of proton-coupled potassium transport in the KUP family

    No full text
    Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins

    Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane

    No full text
    Abstract Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death

    Structural Basis for Rab1 De-AMPylation by the <i>Legionella pneumophila</i> Effector SidD

    Get PDF
    <div><p>The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen <i>Legionella pneumophila</i>. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide <i>in vivo</i> and <i>in vitro</i> evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.</p></div
    corecore