8 research outputs found

    New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin

    Get PDF
    Background: Doxorubicin (DOX) has been very effective against glioblastoma invitro. Its application in vivo is hampered because it cannot pass the blood–brainbarrier (BBB). Significant research efforts are invested to overcome this limitation.Sclareol (SC) is an aromatic compound naturally found in clary sage. Thecombination of SC and DOX showed promising effects in different tumor types invitro and in vivo. Therefore, we tested their combination and innovative hybridmolecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, amajor component of BBB and cancer multidrug resistance marker. Methods:Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, theircombination, and SC:DOX were examined by MTT assay. The effect of SC on DOXaccumulation was determined by flow cytometry. We also studied SC:DOXaccumulation, cellular uptake, localization imaging, and DNA damage induction.Results: The effects of simultaneous SC and DOX treatments demonstrated theconsiderable potential of SC to reverse DOX resistance in glioblastoma cells andincrease DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were lesscytotoxic than DOX, but with reduced resistance and increased selectivity towardsglioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastomacells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclearlocalization of DOX as well as no DNA damaging effects suggest a differentmechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, andtheir innovative hybrids, could be considered a promising strategy that can overcomethe limitations of DOX application in glioblastoma.Kanazir S, Savić D, editors. Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. Belgrade : Serbian Neuroscience Society; 2023. p. 71

    AIMSurv: First pan-European harmonized surveillance of Aedes invasive mosquito species of relevance for human vector-borne diseases

    Get PDF
    Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named “AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108”. AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species

    Expected Changes of Montenegrin Climate, Impact on the Establishment and Spread of the Asian Tiger Mosquito (<i>Aedes albopictus</i>), and Validation of the Model and Model-Based Field Sampling

    No full text
    Aedes albopictus has become established in many parts of Europe since its introduction at the end of the 20th century. It can vector a range of arboviruses, of which Chikungunya and Dengue are most significant for Europe. An analysis of the expected climate change and the related shift in K&#246;ppen zones for Montenegro and impact on the establishment of Ae. albopictus was conducted. Outputs of a mechanistic Aedes albopictus model were validated by 2245 presence/absence records collected from 237 different sites between 2001 and 2014. Finally, model-based sampling was designed and performed at 48 sites in 2015, in a previously unexplored northern part of Montenegro, and results were validated. The Eta Belgrade University (EBU)-Princeton Ocean Model (POM) regional climate model was used with the A2 emissions scenario for the 2001&#8315;2030 and 2071&#8315;2100 integration periods. The results point to a significant increase in suitability for the mosquito and a vertical shift to higher altitudes by the end of the century. The model showed excellent results with the area under the receiver operating characteristic curve (AUC) of 0.94. This study provides a tool for prioritizing surveillance efforts (model-based surveillance), especially when resources are limited. This is the first published analysis of Climate Change that incorporates observations from the national synoptic grid and the subsequent impact on Ae. albopictus in Montenegro

    Quality Control Methods for <i>Aedes albopictus</i> Sterile Male Transportation

    No full text
    Genetic based mosquito control methods have been gaining ground in recent years for their potential to achieve effective suppression or replacement of vector populations without hampering environments or causing any public health risk. These methods require the mass rearing of the target species in large facilities sized to produce millions of sterile males, as already well established for a number of insects of agricultural importance. Assessing the performance of released males in Sterile Insect Technique (SIT) control programs is of the utmost importance for the success of the operation. Besides the negative effects of mass rearing and sterilization, the handling of sterilized insects and shipment to distant areas may also negatively impact the quality of sterilized males. The aim of the current study was to design and executive quality control (QC) tests for sterilized Aedes albopictus (Asian tiger mosquito) males delivered by air shipment from the mass production facility located in Italy to Greece and Montenegro field release sites. Mass reared mosquito strains were based on biological materials received from Italy, Greece and Montenegro. Tests conducted at the mass rearing facility before transportation revealed a rather high residual female contamination following mechanical sex separation (approximately 1.5% females, regardless of the mosquito strain). Irradiated males of all three mosquito strains induced high levels of sterility to females. Shipment lasting approximately 24 h resulted in approximately 15% mortality, while when shipment lasted nearly two days this increased to almost 40%. The flight ability of sterilized males following one day transportation time was satisfactory (over 60%). The response of sterile males to food and water starvation was comparable and slightly lower than that of wild non-transported males. Longevity of sterile males was shorter than that of wild counterparts and it seems it was not affected by mating to wild females. Both mating propensity and mating competitiveness for wild virgin females was higher for the wild, control males compared to the sterile, transported ones. Overall, the performance of sterile male Ae. albopictus delivered from the mass rearing facility of Italy to Greece in approximately 24 h was satisfactory. Transportation lasting two days or longer incurred detrimental effects on males, which called into question the outcome of the SIT release programs. In conclusion, our results demonstrate the need of quality control procedures, especially when sterile male production facilities are not near to the releasing point. Transportation could be a serious drawback for the implementation of Sterile Insect Releases and, consequently, it is important to establish an efficient and fast transportation of sterilized males in advance

    Practical management plan for invasive mosquito species in Europe: I. Asian tiger mosquito (Aedes albopictus)

    No full text
    Aedes albopictus, also known as the “Asian Tiger Mosquito”, is an invasive mosquito species to Europe causing high concern in public health due to its severe nuisance and its vectorial capacity for pathogens such as dengue, chikungunya, yellow fever and Zika. Consequently, the responsible authorities implement management activities to reduce its population density, possibly to below noxious and epidemiological thresholds. In urban areas, these aims are difficult to achieve because of the species’ ability to develop in a wide range of artificial breeding sites, mainly private properties. This document (Management Plan) has been structured to serve as a comprehensive practical and technical guide for stakeholders in organizing the vector control activities in the best possible way. The current plan includes coordinated actions such as standardized control measures and quality control activities, monitoring protocols, activities for stakeholders and local communities, and an emergency vector control plan to reduce the risk of an epidemic
    corecore