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1  | INTRODUC TION

Human movements have dramatically increased in the past decades, 
promoting the intentional or accidental introduction of species into 
new regions often far removed from their natural ranges (Banks, 
Paini, Bayliss, & Hodda, 2015; Hulme, 2009). Predicting the potential 
risks of establishment and spread of non‐native species has thus be‐
come a central question in invasion biology (Jiménez‐Valverde et al., 
2011; Thuiller et al., 2005). The commonly used approach is to pre‐
dict the potential range of an invasive species using environmental 
characteristics of known geographic occurrences in its native range 
(Guisan & Thuiller, 2005; Soberon & Peterson, 2005). A fundamental 
assumption in these predictions is that invasive species retain their 
ancestral ecological niche (i.e., niche conservatism; Wiens & Graham, 
2005) and it makes it difficult to predict the introduced range from 
the species' native range if the non‐native and native niches differ 
(i.e., niche shift; Broenniman et al., 2007).

It has become increasingly important to evaluate whether the 
ecological characteristics of species are maintained or change 
rapidly when they establish outside their initial range (Guisan, 
Petitpierre, Broennimann, Daehler, & Kueffer, 2014; Pearman, 

Guisan, Broennimann, & Randin, 2008). A growing number of stud‐
ies report such niche shift during the invasion process (Atwater, 
Ervine, & Barney, 2018; Broenniman et al., 2007; Guisan et al., 2014; 
Lancaster, Dudaniec, Hansson, & Svensson, 2015; Petitpierre et al., 
2012). Global occurrences are classically used as a background for 
predicting the potential distribution of species. However, compar‐
ing the ecological characteristics of the invaded and the full species' 
native ranges may be misleading if the introduced populations do 
not directly originate from the native but another invasive range (i.e., 
bridgehead effect; Lombaert et al., 2010). Elucidating the routes of 
introduction is a prerequisite to adequately address the question of 
niche shift versus niche conservatism during the invasion process. 
Population genomics and modern analytical tools, such as approxi‐
mate Bayesian computation, allow to combine historical, biological, 
and genetic information, to test for complex scenarios including de‐
mographic stochasticity (i.e., bottleneck) and multiple introductions 
(i.e., genetic admixture), and provide decision statistics to choose the 
most likely scenario (Estoup & Guillemaud, 2010).

The study of the geographical distribution of invasive species 
can also provide valuable information about their invasiveness. For 
instance, niche similarity between non‐native and native ranges may 
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Abstract
Invasive species can encounter environments different from their source populations, 
which may trigger rapid adaptive changes after introduction (niche shift hypothesis). 
To test this hypothesis, we investigated whether postintroduction evolution is corre‐
lated with contrasting environmental conditions between the European invasive and 
source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of envi‐
ronmental niches occupied in European and source population ranges revealed more 
than 96% overlap between invasive and source niches, supporting niche conserva‐
tism. However, we found evidence for postintroduction genetic evolution by reana‐
lyzing a published ddRADseq genomic dataset from 90 European invasive populations 
using genotype–environment association (GEA) methods and generalized dissimilar‐
ity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited 
significant allelic turnover along the gradient of winter precipitation that could be as‐
sociated with ongoing range expansion. Wing morphometric traits weakly correlated 
with environmental gradients within Europe, but wing size differed between invasive 
and source populations located in different climatic areas. Niche similarities between 
source and invasive ranges might have facilitated the establishment of populations. 
Nonetheless, we found evidence for environmental‐induced adaptive changes after 
introduction. The ability to rapidly evolve observed in invasive populations (genetic 
shift) together with a large proportion of unfilled potential suitable areas (80%) pave 
the way to further spread of Ae. albopictus in Europe.
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favor the rapid establishment of introduced populations. However, 
niche expansion requires local adaptation that ultimately determines 
the capacity of populations to persist (Richardson & Pyšek, 2008; Sax 
et al., 2007), raising further questions about the evolutionary mech‐
anisms at play during the invasion process. How fast do populations 
evolve in response to new selective pressures? To what extent does 
the demographic history (e.g., genetic admixture, founder events) 
account for local adaptation? Is there a causal link between niche 
conservatism and range expansion? Ecological genomics approaches 
now allow characterizing the role of environmental variables in shap‐
ing local adaptation (Ahrens et al., 2018; Hoban et al., 2016; Rellstab, 
Gugerli, Eckert, Hancock, & Holderegger, 2015). For invasive species 
undergoing range expansion, genes essential for local adaptation 
are expected to present shifts in allele frequencies along environ‐
mental gradients (Dudaniec, Yong, Lancaster, Svensson, & Hansson, 
2018; Fitzpatrick & Keller, 2015). Other traits such as morphological, 
physiological, or life‐history traits that often show heritable varia‐
tion may also evolve rapidly in response to new selective pressures 
(Lynch & Walsh, 1998; Nosil, 2012; Thompson, 1998).

Among recent biological invasions, the Asian tiger mosquito, 
Aedes (Stegomyia) albopictus (Skuse 1894), has been the focus of a 
large number of species distribution modeling studies at various spa‐
tial scales (Caminade et al., 2012; Dickens, Sun, Jit, Cook, & Carrasco, 
2018; Ducheyne et al., 2018; ECDC, 2009, 2012; Fischer, Thomas, 
Niemitz, Reineking, & Beierkuhnlein, 2011; Kraemer et al., 2015; 
Medlock, Avenell, Barrass, & Leach, 2006; Roiz, Neteler, Castellani, 
Arnoldi, & Rizzoli, 2011). These studies depicted a consensus of the 
geographical determinants of Ae. albopictus global distribution range, 
but they primarily aimed at evaluating the potential contemporary 
and future distributions. Studies evaluating the niche conservatism 
hypothesis revealed that invaded niches differ from those of native 
populations (Cunze, Kochmann, Koch, & Klimpel, 2018; Hill, Gallardo, 
& Terblanche, 2017; Medley, 2010). These differences were either 
explained by niche expansion supporting niche shift (Hill et al., 2017) 
or by niche unfilling supporting niche conservatism (Cunze et al., 
2018). These studies compared invaded range niches to those of 
the entire Asian native range (Cunze et al., 2018; Medley, 2010), but 
assessing the adaptive potential of introduced populations requires 
having a good knowledge of their precise source. For instance, the 
reconstruction of Ae. albopictus invasion routes has revealed that the 
sources can be previously invaded areas (Sherpa, Blum, Capblancq, 
et al., 2019).

In the present study, we address the question of niche shift 
versus niche conservatism during the invasive range expansion of 
Ae. albopictus in Europe, by comparing the ecological characteris‐
tics of European invasive populations to the characteristics of their 
North American and Chinese source populations (Sherpa, Blum, 
Capblancq, et al., 2019). Because North American populations 
originated in Japan, where preexisting cold adaptation probably fa‐
vored invasion in temperate regions (Sherpa, Blum, Capblancq, et 
al., 2019; Sherpa, Blum, & Després, 2019), we also included Japan in 
niche comparisons. The examination of niche shifts during the inva‐
sion process of Ae. albopictus has never been combined so far to the 

analysis of traits that may affect local adaptation. We thus tested 
whether substantial differences in environmental niches occupied 
by European invasive populations may have promoted rapid adaptive 
changes after introduction. We used published genomic data from 
double‐digest restriction‐associated DNA sequencing (ddRADseq) 
from 90 populations distributed throughout the European invasive 
range and measured wing geometric morphometrics for a subset of 
these populations. To evaluate the ability of European populations to 
evolve in response to new selective pressures, we tested the effect 
of six environmental factors on genetic composition and morpho‐
metric variation using correlative approaches controlling for popula‐
tions demographic history. Traits potentially under current selection 
within Europe were then compared to their source populations.

2  | MATERIAL AND METHODS

2.1 | Study area

The study area encompasses 90 invasive populations distributed across 
the current European invasive range of Ae. albopictus, which have been 
analyzed in a previous study (Sherpa, Blum, Capblancq, et al., 2019). 
The samples include populations from Albania (11), Croatia (3), France 
(30, including 2 from Corsica), Greece (3, including 1 from Kefalonia), 
Italy (17, including 5 from Sardinia and 4 from Sicily), Montenegro 
(1), Serbia (2), Slovenia (10), Spain (11, including 4 from Majorca), and 
Switzerland (2) (Figure 1, Table S1). Based on the previous reconstruc‐
tion of colonization routes, we included data from the two European 
source populations (China and United States) and Japan (ancestral ori‐
gin of United States; Figure S1; Sherpa, Blum, Capblancq, et al., 2019).

2.2 | Data collection

2.2.1 | Occurrence data

We collected occurrences (presence only records) of Ae. albopictus 
available from the Global Biodiversity Information Facility (https ://
www.gbif.org/) and the citizen science project (https ://www.inatu 
ralist.org/), and literature review of previous distribution studies or 
sample material (Table S2). Aedes albopictus has been introduced in 
North Italy from the United States in 1990 (Sabatini, Raineri, Trovato, & 
Coluzzi, 1990; Sherpa, Blum, Capblancq, et al., 2019) so we considered 
only the occurrences recorded before 1990 for the US source in order 
to compare the ecological characteristics of US invasive populations 
before their introduction into Europe. We retained uniquely georef‐
erenced occurrences, resulting in 4,649 occurrences in Europe, 265 in 
China, 81 in Japan, and 275 in the United States (Figure 1, Figure S1).

2.2.2 | Environmental data

Climatic conditions are determinant for Ae. albopictus adult activity, 
egg development, and egg overwintering survival. Environmental 
predictors for its establishment classically include annual mean tem‐
perature (suitable above 11°C), annual precipitations (suitable above 

https://www.gbif.org/
https://www.gbif.org/
https://www.inaturalist.org/
https://www.inaturalist.org/
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500 mm), and minimum temperature of the coldest month (suitable 
above 0°C; Fischer, Thomas, Neteler, Tjaden, & Beierkuhnlein, 2014). 
We collected climatic data from the CHELSA database v1.2 (http://
chelsa‐clima te.org) at a resolution of 30 arc seconds, with monthly 
mean temperature and precipitation averaged over the period 1979–
2013 (Karger et al., 2017). We included the 19 yearly bioclimatic 
variables and mean monthly precipitation, and mean, minimum, 
and maximum temperatures. We also retrieved the Global‐Aridity 
Index, related to evapotranspiration processes and rainfall deficit, 
from the CGIAR‐CSI Database (http://www.cgiar‐csi.org) at a resolu‐
tion of 30 arc seconds for the period 1970–2000 (Zomer, Trabucco, 
Bossio, & Verchot, 2008). We considered two indices from the 
NASA Socioeconomic Data and Applications Center (SEDAC; https 
://sedac.ciesin.colum bia.edu): the net primary productivity (NPP; 
Imhoff et al., 2004) and the 2009 human footprint (HF) because 
Ae. albopictus is an anthropophilic species. HF is a cumulative index 
indicating human pressure on the environment measured using 
eight variables (built‐up environments, population density, electric 
power infrastructure, croplands, pasture lands, roads, railways, and 
navigable waterways) at a resolution of ~1 km (Venter et al., 2018). 
We retained noncolinear variables using the occurrences in the four 
geographical regions (correlation coefficients < 0.50), resulting in 
six variables to represent environmental variation among ranges: 
PRJ (precipitation in January), PRS (precipitation seasonality), MTP 

(minimum temperature of the coldest month), ISO (isothermality), 
NPP (net primary production), and HF (human footprint; Figure S2).

2.2.3 | Genetic data acquisition

We reanalyzed previously published genomic data obtained from 
double‐digest restriction‐associated DNA sequencing (ddRADseq; 
Sherpa, Blum, Capblancq, et al., 2019; Sherpa, Rioux, Pougnet‐
Lagarde, & Després, 2018). Sequences of 110 bp for 90 European 
populations (N = 551) were mapped to the Ae. albopictus refer‐
ence genome (Chen et al., 2015) using BWA‐MEM v0.7.5 (Li et al., 
2009). We retained uniquely aligned reads with MapQ ≥ 30 using 
SAMTOOLS v1.7 (Li & Durbin, 2009), and with a minimum read 
depth of 5 reads/individual on average using STACKS v.2.0 (Catchen, 
Hohenlohe, Bassham, Amores, & Cresko, 2013). We included all 
polymorphic positions, with a maximum of 30% missing data and a 
minor allele count of 40, resulting in a dataset of 6,506 SNPs with 
18.5% missing data.

2.2.4 | Mosquito wings

The characterization of wing morphometric variation was performed 
on laboratory‐raised individuals to report morphometric differences 
that reflect genetic differences among populations and measured 

F I G U R E  1   Data collection. Distribution data of Aedes albopictus comprise 4,649 occurrences from freely available online databases and 
literature review of previous distribution studies or sample material (Table S2). ddRADseq genomic data comprise 90 localities (N = 551; 
Table S1) from previously published data (Table S3; Sherpa, Blum, Capblancq, et al., 2019). Morphometric data comprises 19 populations 
(N = 238) generated for the purpose of this study
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the first generation so that the phenotypic characteristics of pop‐
ulations are not altered. Eggs were reared in standard laboratory 
conditions (27°C, 70% relative humidity, and day length cycles of 
14:10‐hr light:dark), with <1 larva per milliliter. Morphometric data 
were collected for 410 individuals from 25 invasive populations from 
Europe and 1 invasive population from United States (Table S1). We 
also included morphometric data from 153 individuals from 4 native 
populations (China and Japan) reared in the same laboratory condi‐
tions, analyzed in a previous study (Sherpa, Blum, & Després, 2019).

2.3 | Environmental niche comparison

2.3.1 | Ordination method

Environmental niche variation of the six variables retained was 
evaluated using principal component analysis (PCA) implemented in 
the ade4 package v1.7‐13 (Chessel, Dufour, & Thioulouse, 2004) in 
R v3.3.3 (R Core Team, 2017) for all analyses. We assessed the vari‐
ation between the European invasive range niche and one of each 
source population by comparing the coordinates of occurrences in 
a two‐dimensional environmental space. We examined the coordi‐
nates of primarily introduced populations in Europe (Albania, North 
Italy, and Central Italy; Sherpa, Blum, Capblancq, et al., 2019) com‐
pared to populations outside Europe (China, Japan, United States), 
and the coordinates of primary versus subsequent introductions in 
Europe. We then calculated three niche metrics using occurrence 
densities along two gridded environmental gradients (i.e., the two 
first axes of PCA; Broennimann et al., 2012; Petitpierre et al., 2012) 
in the ecospat package v3.0 in R (Broennimann, Cola, & Guisan, 
2018; Di Cola et al., 2017). We evaluated the niche overlap using 
Schoener's D (Schoener, 1968) and tested whether niches are more 
similar (similarity test) or different (equivalency test) than random 
expectation (Broennimann et al., 2012; Glennon, Ritchie, & Segraves, 
2014; Warren, Glor, & Turelli, 2008). For similarity tests, we fixed the 
source niche as the reference and shifted only the European invasive 
niche. The significance of similarity and equivalency tests was as‐
sessed by 1,000 permutations.

2.3.2 | Niche‐based distribution modeling

We performed four niche distribution models in relation to the 
six environmental variables retained for each studied area (Japan, 
China, United States, Europe). To reduce spatial autocorrela‐
tion, one presence was randomly selected when several points 
fell within the same raster cell. For each region, five datasets of 
5,000 pseudo‐absences were selected using a surface range en‐
velope model. An ensemble of projections of species distributions 
models (SDM) from five statistical models was obtained, includ‐
ing generalized linear models (GLM), generalized additive models 
(GAM), boosted regression trees (BRT), multiple adaptive regres‐
sion splines (MARS), and Random Forest (RF; Araújo & New, 2007; 
Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009; Thuiller, 
2004). Models were calibrated for the baseline period using 70% 

of observations randomly sampled from the initial data and evalu‐
ated against the remaining 30% data using the true skill statistic 
(TSS, Allouche, Tsoar, & Kadmon, 2006) and the area under the 
curve (ROC, Swets, 1988). This analysis was repeated three times, 
thus providing threefold internal cross‐validation of the models. 
Models and the ensemble forecasting procedure were performed 
using the BIOMOD package (Thuiller, 2003; Thuiller, Lafourcade, 
Engler, & Araújo, 2009) implemented in the biomod2 package 
v3.3‐7.1 in R (Thuiller, Georges, Engler, & Beriner, 2019).

The relative importance of each environmental variable was 
assessed by calculating the Pearson's correlation between the 
standard predictions (i.e., fitted values) and the predictions after 
randomly permuting the values of the variable. All calibrated models 
were then projected under current conditions over Europe to calcu‐
late the percentage of agreement between the potential European 
invasive range calibrated in Europe and the potential European inva‐
sive range calibrated in each source population. We evaluated niche 
stability (i.e., European range that overlaps between the two mod‐
els), niche expansion (i.e., European range that is not predicted by 
the model calibrated in the source), and niche unfilling (i.e., European 
range that is not predicted by the model calibrated in Europe).

2.4 | Genomic signature of selection

2.4.1 | SNP–environment association

Genotype–environment associations (GEA) were performed for 
testing association between each of the 6,506 SNPs and the six en‐
vironmental variables. We used two GEA: the univariate latent fac‐
tor mixed model (LFMM; Frichot, Schoville, Bouchard, & François, 
2013) implemented in the LEA package v1.4.0 in R (Frichot & 
François, 2015), and the multivariate approach based on redundancy 
analysis (RDA; Capblancq, Luu, Blum, & Bazin, 2018; Forester, Lasky, 
Wagner, & Urban, 2018) using rda in the vegan package v2.4‐5 in R 
(Legendre & Legendre, 2012; Oksanen et al., 2017). The univariate 
GEA method LFMM tests for association between each SNP allele 
frequency and a single environmental predictor (Frichot et al., 2013). 
One‐factor LFMM models were run with five repetitions and 10,000 
iterations with a burn‐in period of 2,000 iterations. The multivariate 
RDA decomposes genetic variance on a set of orthogonal axes in re‐
lation to several environmental predictors to find SNPs that covary 
with multivariate environmental patterns (Capblancq et al., 2018; 
Forester et al., 2018). SNPs are modeled as a function of predictor 
variables, producing as many constrained axes as environmental 
predictors. We aimed at finding overlapping SNPs between the two 
GEA methods, so we built a RDA model with all six environmental 
variables as predictors to identify SNPs correlated with each of the 
six constrained axes.

We accounted for the shared demographic histories of popula‐
tions when modeling associations between SNPs and environmental 
predictors (i.e., at least three independent introduction events in 
Europe; Sherpa, Blum, Capblancq, et al., 2019). LFMM directly con‐
trols for population genetic structure using latent factors (Frichot 
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et al., 2013) and were run with three latent factors. RDA does not 
directly model this confounding effect, but partial RDA allows inte‐
grating supplementary predicting variables as conditional, thus sum‐
marizing the component of genetic variation that is only explained by 
environmental variables. We used the ancestry coefficients for K = 3 
genetic groups estimated in Sherpa, Blum, Capblancq, et al. (2019).

For LFMM, the Z‐scores of one‐factor models were combined 
and used to compute p‐values that were adjusted using a genomic 
inflation factor (GIF; Frichot & François, 2015). As recommended, we 
assessed the closeness of GIF (calculated from the Z‐scores derived) 
to the value of 1.0, which ranged from 1.12 to 1.73 across the six 
environmental variables. For the RDA, we used the loadings of each 
SNP in the ordination space (i.e., SNP scores) on constrained axes 
as a statistic for testing the significance of the correlation between 
SNPs and environmental data (Capblancq et al., 2018; Forester et al., 
2018). The false discovery rate (FDR) control algorithm was applied 
to reduce the proportion of false positives detected by each GEA 
method (Storey & Tibshirani, 2003) using the qvalue package v2.4.2 
in R (Storey, Bass, Dabney, & Robinson, 2015). We detected a set of 
loci (220 base sequences) among which several SNPs were discov‐
ered by at least one GEA method with a Q‐value threshold of 0.05 
but retained only overlapping SNPs as “outlier SNPs.”

2.4.2 | Generalized dissimilarity modeling of 
candidate SNPs

We tested whether outlier SNPs show spatially explicit shifts in al‐
lele frequencies using generalized dissimilarity modeling (GDM; 
Fitzpatrick & Keller, 2015), implemented in the gdm package v1.3.11 
in R (Ferrier, Manion, Elith, & Richardson, 2007; Manion et al., 2017). 
This method models the response of SNPs along environmental gra‐
dients by estimating the magnitude of change in allele frequency 
(i.e., allelic turnover; Fitzpatrick & Keller, 2015). Outlier SNPs located 
among different loci were modeled independently but together 
when located on the same locus. GDM uses population genetic dis‐
tance matrices (pairwise FST for each SNP locus among populations). 
We subsampled our genetic dataset to only include populations with 
a minimum sample size of N ≥ 5 to obtain accurate allele frequencies. 
For each candidate SNP locus, 47 to 59 sample sites were analyzed. 
Pairwise FST among populations (Weir & Cockerham, 1984) for each 
SNP locus were calculated using hierfstat package v0.04‐22 in R 
(Goudet, 2005) and were rescaled between 0 and 1.

We applied three criteria to discover “candidate loci” associ‐
ated with one environmental predictor among GEA outliers. First, 
we tested whether the allelic turnover at a given locus differs from 
random expectations. We randomly sampled 200 SNPs among the 
6,506 available (i.e., reference group; Fitzpatrick & Keller, 2015) and 
evaluated whether the percentage of GDM deviance (%GDM) was 
higher than for the reference group. Second, we tested whether al‐
lelic variation at this locus is better explained by environment than 
isolation by distance. We included Euclidean geographic distance 
between populations in the GDM (Fitzpatrick & Keller, 2015) and 
evaluated whether the allelic turnover induced by the environment 

was higher than by geography. Loci that do not match this criterion 
were considered as false positives. Third, we evaluated whether one 
relevant environmental predictor influences the allelic turnover at 
this locus relative to other environmental predictors, with %GDM 
explained by that predictor ≥40%.

2.4.3 | Adaptive genetic variation maps

We screened genes with candidate loci using the VectorBase bi‐
omart online tool (https ://bioma rt.vecto rbase.org/bioma rt/martv 
iew/) and annotations AaloF1.2 of Ae. albopictus reference genome. 
When genes were not annotated, we evaluated orthologous genes 
in the VectorBase database. Candidate loci associated with one 
environmental predictor (GDM) and located in genes were further 
considered as putative “adaptive loci,” and their function was as‐
sessed using Gene Ontology annotations of the Universal Protein 
Knowledgebase (UniProt, http://www.unipr ot.org).

The observed variation in allele frequencies restricted to adap‐
tive loci was mapped against its expected adaptive genetic varia‐
tion in Europe using the gdm v1.3.11 and raster v2.4.8 packages in R 
(Ferrier et al., 2007; Hijmans, 2018). In order to determine whether 
adaptive genetic polymorphisms within Europe were already pres‐
ent before introduction, we also used ddRADseq genomic data of 
source populations (China, United States, and Japan; Sherpa, Blum, 
Capblancq, et al., 2019). We exported the genotypes and computed 
allele frequencies of putative adaptive loci. The presence of the 
adaptive alleles in source populations but with different allele fre‐
quency relative to European invasive populations was indicative of 
postintroduction changes in response to new selective pressure (a 
relevant predictor of GDM).

2.5 | Wing morphometric variation

2.5.1 | Landmark‐based geometric morphometrics

Wing morphometrics were performed using landmark‐based (LM) 
geometric morphometrics. Twenty LM located at vein intersec‐
tions and termini of left wings (Figure S3; Sherpa, Blum, & Després, 
2019) were digitalized using tpsUtil v1.76 (Rohlf, 2006) and tpsDig2 
v2.31 (Rohlf, 2008). Variation due to scale, orientation, and position 
was removed by applying a Procrustes superimposition using IMP 
CoordGen8 (Sheets, 2008).

2.5.2 | Morphometric differentiation

Wing shape (LM Procrustes coordinates) variation among popula‐
tions was first evaluated using the principal component analysis 
(PCA) in IMP CoordGen8 (Sheets, 2008). The level of morphometric 
differentiation was tested using analysis of variance models in the 
car package v3.0‐2 in R (Fox & Weisberg, 2011). Wing size (log‐trans‐
formed centroid size, CS) and shape (LM Procrustes coordinates) dif‐
ferentiation were tested using univariate analyses of variance (type 
II ANOVA) and multivariate analyses of variance (type II MANOVA), 

https://biomart.vectorbase.org/biomart/martview/
https://biomart.vectorbase.org/biomart/martview/
http://www.uniprot.org
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respectively. MANOVA and ANOVA were performed separately for 
males and females. In order to compare source and invasive popula‐
tions, we first tested differences among main geographical regions 
(China, Japan, United States, Albania, North Italy, Corsica, Croatia, 
Majorca, Montenegro, Switzerland). Pairwise comparisons among 
populations were performed using a subset of the morphometric 
dataset because the sample size was small for some populations 
(Table S1). For each sex, we only tested differences for populations 
with at least five individuals.

2.5.3 | Environmental correlations

The effect of each environmental variable on wing size and shape 
was assessed using RDA, as implemented in the vegan package 
v2.4.5 in R (Oksanen et al., 2017). We first built a global model 
with morphometric data as response variables and the six en‐
vironmental variables as explanatory variables to evaluate the 
proportion of morphometric variation that is constrained by the 
environment. Then, we ran one‐factor RDA models with each 

environmental variable and used the proportion of variance ex‐
plained by each environmental variable to represent the relative 
importance of each environmental variable in morphometric vari‐
ation. The significance of each fitted one‐factor model was as‐
sessed using ANOVA. As for RDA‐based GEA, all the models were 
fitted using a supplementary explanatory variable as conditional, 
removing the confounding effect of population genetic structure. 
Although morphometric data were obtained for the same sampled 
populations, individual data did not match between morphometric 
and genotypic datasets. Thus, we used the ancestry coefficients 
for K = 3 genetic groups estimated in Sherpa, Blum, Capblancq, et 
al. (2019) averaged per population.

3  | RESULTS

3.1 | Niche spaces of reduced dimensionality

The PCA of 5,270‐pooled occurrences (Europe, Japan, United 
States, China) for six environmental variables (PRS: precipitation 

F I G U R E  2   Environmental space 
comparisons. Comparisons are 
between environmental spaces of 
source and invaded ranges in (a), and 
primary introductions and subsequent 
introductions in Europe in (b). The convex 
hulls indicate the prevalence (25%, 
50%, 75%, and 100% of sites included) 
of the environmental conditions in the 
source population ranges (United States, 
China). The stars show the position of 
the first introduction records in Europe. 
Occurrences are indicated with small 
dots and centroids with big dots (only for 
countries with reconstructed colonization 
routes; Sherpa, Blum, Capblancq, et al., 
2019). Black arrows linking centroids 
represent the origin of source populations. 
The correlation circle indicates the 
importance of environmental variables 
on the two first axes of the PCA (55% of 
the total variance): PRJ (precipitation in 
January), PRS (precipitation seasonality), 
MTP (minimum temperature of the 
coldest month), ISO (isothermality), NPP 
(net primary production), and HF (human 
footprint)
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seasonality, PRJ: precipitation in January, ISO: isothermality, MTP: 
minimum temperature of the coldest month, NPP: net primary 
production, HF: human footprint) revealed two significant axes 
of environmental variation (Figure 2). The first axis (PC1, 36% of 
total variance) differentiated the environmental spaces of source 
populations, with colder winters in China than in the United States 
(Figure 2a; see Figure S4 for Japan). The second axis (PC2, 19% of 
total variance) was mostly associated with HF. Niche centroids dif‐
fered between source and European introduced ranges (Figure 2a), 

as well as between secondary and primary introductions in Europe 
(Figure 2b). Primary introduced populations in Albania show a niche 
shift that occurs along PC1 (Chinese source), indicating winter cli‐
mate (MTP and PRJ) as the best predictors of niche differentiation 
(Figure 2a). Populations in North Italy occupy a similar climatic 
niche to their North American source (PC2) but an upward shift 
of the niche centroid can be observed, which is associated with a 
higher influence of human activities. The third primary introduced 
area (Central Italy) revealed a shift of the niche centroid that seems 

F I G U R E  3   Niche‐based distribution 
modeling. The upper and left boxes, 
respectively, represent the results 
obtained from models calibrated in 
Europe (yellow) and in areas outside 
Europe: United States (gray), China (red), 
and Japan (blue). The right boxes indicate 
predicted areas of models calibrated 
in areas outside Europe projected 
into Europe (yellow: only predicted by 
Europe, gray: predicted by Europe and 
United States, red: predicted by Europe 
and China, blue: predicted by Europe 
and Japan). European occurrences are 
colored according to model predictions 
(white: not predicted, black: predicted). 
Niche changes scenarios: expansion, 
stability and unfilling represent agreement 
percentage between each pair of models
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to result from a combination of the climate niches of the two source 
populations (North Italy and China). Several secondary introduc‐
tions also show a shift of the niche centroid but the environmen‐
tal space occupied by Ae. albopictus in Europe largely overlaps the 
Chinese and/or North American environmental spaces (Figure 2b).

The coordinates of occurrences on the two PCA axes were used 
as a representation of the realized niche space for each region to 
investigate niche conservatism between European invasive pop‐
ulations and source populations (United States, China, Japan). The 
European invasive range niche shows overlap with the source pop‐
ulations range niches with Schoener's D of 0.292 (Europe–United 
States), 0.334 (Europe–China) and 0.362 (Europe–Japan; D = 0: no 
overlap, D = 1: complete overlap). Despite niche overlap between 
environmental spaces, none of the niche similarity and equivalency 
tests were significant.

3.2 | Potential European distribution using source 
populations

The quality of distribution models was very high with an average 
TSS of 0.97, 0.90, 0.93, and 0.92 for Japan, China, United States, and 
Europe, respectively, and an average ROC of 0.99 for the four areas. 
Two environmental variables were the most relevant predictors of 
Ae. albopictus distribution: HF and MTP (Figure S5). The patterns of 
relative importance were different among regions, both being pre‐
dictors for the geographical distribution in China and Europe, mostly 
HF for Japan and MTP for the United States. The model calibrated in 
Europe predicted 95% of total European occurrences (Figures 3 and 
4). The potential European invasive range was also very well pre‐
dicted by the models calibrated in China and United States (niche 
stability > 96%), but much lower than the total potential distribution 

F I G U R E  4   Relative importance of environmental predictors on geographical distribution, morphometric and adaptive genetic variation 
in Europe. The same six environmental predictors were used in niche‐based species distribution modeling (SDM; left), RDA‐based 
morphometric–environment correlations (center), and genotype–environment associations (GEA) and generalized dissimilarity modeling 
(GDM; right). Darker shading indicates greater relative importance, and relative importance ≥40% are surrounded by black boxes. Stars 
indicate the significance of tests. Morphometric traits: ANOVA results for one‐factor RDA models; SNP loci: % of GDM deviance for 
candidate SNP loci higher than % of GDM deviance for reference group; and environmental predictor inducing higher allelic turnover than 
reference group, geography and other environmental predictors (Table 1). Locus (Loc) name colored according to GDM results, gray: not 
candidate, black: candidate. Loci located in genes are underlined
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predicted by sources (niche unfilling > 80%; Figure 3). Models fitted 
in Japan failed to predict the potential distribution in Europe with 
only 4% overlap in predicted areas (Figure 3).

3.3 | Detection of adaptive SNP loci

The identification of adaptive SNP loci was carried out in three 
steps. We detected outlier loci correlated to environmental variables 
using two GEA methods (LFMM and RDADAPT) while controlling 
for genetic structure. We then used outlier loci detected by the two 
GEA methods in FST‐based GDM. Loci showing a significant shift in 
allele frequencies along one relevant environmental predictor were 

considered as candidate loci. Those located in genes were consid‐
ered as potentially involved in adaptation, and we predicted adap‐
tive genetic composition in space using the relevant environmental 
predictor fitted.

Among the 6,506 SNPs analyzed, LFMM and RDA, respectively, 
discovered 279 and 471 significant associations with environmental 
variables. A total of 21 loci (133 SNPs) were detected by both meth‐
ods (Table S3). Among 133 SNPs, 18 outlier SNPs were discovered 
by both GEA methods with a FDR of 5% (Table S3) that were distrib‐
uted across 14 loci analyzed independently within GDM. All these 
loci had higher %GDM than the model performed with the reference 
group, supporting that population genetic structure was adequately 

F I G U R E  5   Predicted spatial variation 
in population‐level adaptive genetic 
composition from GDM. Map font colors 
represent gradients in allelic turnover 
derived from transformed environmental 
predictors (precipitation in January). 
Dot colors represent gradient in allelic 
frequencies observed in European 
invasive populations, with insert indicating 
allelic frequencies in source populations. 
For each locus, the partial allelic turnover 
along the precipitation gradient in January 
is the predicted ΔFST. Partial allelic 
turnovers for the 14 candidate SNP loci in 
relation to geographic distances and each 
environmental variable are presented in 
Figure S6
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accounted in GEA (Table 1). The partial allelic turnover of each locus 
in relation to each environmental variable and geographical distances 
revealed one locus mainly associated with geography (Locus 1908), 
thus representing a false positive (Table 1). The other 13 loci had an 
explicit allelic turnover for at least one environmental variable rela‐
tive to the turnover for reference group and geography (in bold in 
Table 1, Figure S6). The environmental variable inducing the largest 
partial allelic turnover for each locus was considered as the most rele‐
vant predictor underlying changes in allele frequencies. The relevant 
predictor for most of the changes in genetic composition was PRJ (7 
loci; Table 1, Figure S5). Allelic turnover was also observed in rela‐
tion to temperature predictors (3 loci) and human footprint (3 loci). 
Among the 13 loci, 11 also show ≥ 40% of %GDM explained by one 
relevant environmental predictor (not for loci 144365 and 593329; 
underlined in Table 1). We retained nine candidate loci showing that 
the environmental predictor inducing the most significant allelic 
turnover also explained ≥ 40% of %GDM (not for loci 709751 and 
748588; Table 1). Candidate loci are highlighted with both stars (larg‐
est allelic turnover) and boxes (≥40% of %GDM) in Figure 4.

Among the nine candidate loci, three were located in genes. 
Locus 318305 is located in AALF001258 encoding a transmembrane 
181‐like protein involved in toxic substance binding, Locus 367599 is 
located in AALF004989 orthologous to DNase I, and Locus 561198 
is located in AALF012056 that has more than 96% sequence homol‐
ogy with mosquito heat‐shock 70‐kDa protein cognate 1 (Hsc70‐1) 
belonging to the Hsp70 family. The expected variation in genetic 
composition for these three adaptive loci was predicted using GDM 
results and PRJ raster data at the European scale (Figure 5). The ex‐
pected pattern was similar among adaptive loci, with higher frequen‐
cies of the alternative allele in areas with high precipitation during 
winter but differed in the magnitude of allelic turnover. Despite 
large %GDM explained by PRJ in fitted models, the predicted 

dissimilarities did not well fit the observed dissimilarities (Figure S7). 
The two alleles were already present before introduction in Europe, 
but most European populations show different allele frequencies 
from their source (Figure 5).

3.4 | Wing morphometric variation

Wing shape differentiation between males and females accounted 
for 33% of total wing shape variation (PC1; Figure S8A). Although 
source populations (China, United States) can be differentiated 
based on wing shape (PC2, 16% of total wing shape variance), this 
analysis revealed low variation among European invasive popula‐
tions. Even if low, wing shape variation among geographical regions 
and populations was significant for females (MANOVA, respectively, 
df = 9, F = 2.32, p < 2.e−16; df = 18, F = 1.71, p < 2.e−16) and males 
(MANOVA, respectively, df = 9, F = 2.08, p < 2.e−16; df = 18, F = 1.80, 
p < 2.e−16). Similarly for females and males, all the populations lo‐
cated in temperate conditions (United States, Japan, Europe) were 
different from those in subtropical conditions (China; ANOVA, fe‐
males: df = 9, F = 16.26, p < 2.e−16; males: df = 9, F = 11.94, p < 2.
e−16). Wing size variation among populations was also significant 
(ANOVA, females: df = 18, F = 25.27, p < 2.e−16; males: df = 18, 
F = 14.03, p < 2.e−16; Figure 6 and Figure S8B). As morphomet‐
ric variation among European populations was low, we also found 
low correlation between morphometric traits and environmental 
variables. RDA on wing shape revealed that 6.9% of total variation 
was constrained by environmental conditions (ANOVA, F = 4.22, 
p = .001). One‐factor RDA models indicated that all the environmen‐
tal variables constrain equivalent proportion of wing shape variation 
(ranging from 0.7% to 2.7%, Figure 4). RDA on wing size revealed 
only 1% of variation constrained by environmental conditions and 
was not significant (ANOVA, F = 0.60, p = .748).

F I G U R E  6   Wing size variation among 
Aedes albopictus populations. Each 
males–females comparison is significant. 
Letters represent the results of ANOVA 
for comparisons among main geographical 
regions, with different uppercase letters 
indicating significant tests. Sample sizes 
(male/female): United States = 16/11; 
China = 50/55; Japan = 27/21; 
Italy = 18/63; Albania = 55/53; 
Corsica = 8/14; Majorca = 11/7; 
Croatia = 19/20; Montenegro = 9/11; 
Switzerland = 13/7. ANOVA results for 
comparisons among populations are in 
Figure S8B
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4  | DISCUSSION

4.1 | Niche conservatism in Aedes albopictus

Niche conservatism during the invasion process of Ae. albopictus 
has been examined previously (Cunze et al., 2018; Hill et al., 2017; 
Medley, 2010). These studies suggested that invasive populations' 
niche ranges (Europe, North America, South America, Africa) differ 
from those of native Asian populations (Cunze et al., 2018; Medley, 
2010). However, niche comparisons did not account for the origin of 
introduced populations while this knowledge is being increasingly 
available (Kotsakiozi et al., 2017; Sherpa, Blum, Capblancq, et al., 
2019). Here, we compared the environmental niches of European in‐
troduced populations with the one of their US (from ancestral Japan 
origin that was included in the analysis) and Chinese sources (Sherpa, 
Blum, Capblancq, et al., 2019). The comparison of niches in reduced 
environmental space revealed that the two source populations for 
the European invasion have broad, different but overlapping envi‐
ronmental niches (Figure 2a), as previously reported (Cunze et al., 
2018; Medley, 2010). The distribution of European populations in 
this space reveals niche differences between primarily introduced 
populations and their source populations, with centroids shift re‐
lated to winter climate for Albania and human pressure for North 
Italy (Figure 2a).

Regarding subsequent introductions, the colonization of partic‐
ular environmental space in Europe seems to be related to specific 
subgroups of source populations. Indeed, secondary introductions 
can occupy niches different from those of primarily introduced pop‐
ulations they originate from (Albania, North Italy, and Central Italy) 
but that still overlap the vast niche of ancestral source populations 
(the United States and China), which could support niche conser‐
vatism. Nonetheless, we found the European invasive niche neither 
more equivalent nor more similar to one of the source niche than 
random expectations, supporting neither conservatism nor shift 
between invaded and source niches. Because models calibrated in 
source populations are expected to accurately predict the current 
European invasive range if niche is conserved (Wiens & Graham, 
2005), we evaluated the different possible scenarios of niche shift 
that can explain niche differences using SDM results. Both niche 
expansion and niche unfilling explain why the niches of invasive 
populations do not overlap with the niche of their sources. While 
niche expansion predicts a species to occupy different environmen‐
tal areas (niche shift), niche unfilling indicates that invasive popula‐
tions do not occupy all areas predicted by the sources, regardless 
of niche stability. Niche stability is the proportion of overlapping 
niches, which indicates the tendency of populations to retain their 
niche (niche conservatism; Guisan et al., 2014). We found a high 
proportion of niche stability (>96%) and niche unfilling (80%–85%), 
supporting niche conservatism between European invasive popula‐
tions and their sources (China, United States), but also indicating that 
Ae. albopictus does not (yet) occupy all the suitable areas available in 
Europe, which could be related to the short time since introduction 
in Europe (40 years). This result is congruent with those found by 

Cunze et al. (2018) and suggests that niche conservatism is the typi‐
cal pattern in Ae. albopictus invasion process.

4.2 | Environmental adaptation after introduction 
in Europe

Niche comparisons, supporting niche conservatism, do not suggest 
that the invasive range expansion within Europe required new evo‐
lutionary adaptations. Nonetheless, examining the variation at wing 
morphometric traits and genomic loci, we found evidence for signa‐
tures of selection after the introduction of Ae. albopictus in Europe. 
Wing size and shape weakly differ among European invasive popula‐
tions (Figure 6, Figure S8) and are not correlated with environmen‐
tal variables (1%–6%). Furthermore, we found that the wing size of 
European invasive populations (36.6°N–48.8°N) do not differ from 
those of Japan and United States (35.9°N and 33.7°N, respectively). 
Our results are consistent with studies showing among‐population 
variation but no differences across latitudes of temperate areas in 
Ae. albopictus (Armbruster & Conn, 2006; O'Donnell & Armbruster, 
2009; Urbanski et al., 2012). Wing traits measurements were per‐
formed under common garden conditions, thus reflecting only ge‐
netic differences. The absence of variation in wing size and shape 
could reveal that these traits are neutral. However, a previous 
analysis in Ae. albopictus revealed wing size clines among tropical, 
subtropical, and temperate native ranges (Sherpa, Blum, & Després, 
2019). Furthermore, all temperate invasive and native populations 
differ from one of the European source located in more southern 
latitudes (China: 23.1°N), suggesting postintroduction changes in 
the size of individuals as Albanian populations were introduced from 
China (Sherpa, Blum, Capblancq, et al., 2019). Our results in Ae. al‐
bopictus are thus consistent with parallel climate‐mediated selection 
on insect wing size in the native and invaded ranges located in similar 
temperate latitudes (Blanckenhorn & Demont, 2004). The climatic 
variation encountered during the range expansion across ~12° of 
latitude within Europe is probably not strong enough to induce vari‐
ation in this trait.

Searching for signatures of selection within the genome of 
Ae. albopictus, we reveal three adaptive loci associated with pre‐
cipitation during cold periods (Figures 4 and 5). Cold and drought 
are crucial factors influencing the survival of overwintering insects 
(Block, 1996). Aedes albopictus winter survivorship in cold environ‐
ments is determined by the photoperiodic induced diapause of eggs 
(Hanson & Craig, 1994; Hawley, 1988), which has a complex molec‐
ular basis (Armbruster, 2016). In Europe, Ae. albopictus overwinters 
for 6 months from autumn to the next spring and can experience 
minimum winter temperature ranging −13.1–11.8°C and precipi‐
tation during the coldest month ranging from 18 to 227 mm (from 
occurrence distribution; Table S2). Physiological experiments evalu‐
ating the relationships between water availability and cold hardiness 
have shown higher survival chance in Ae. albopictus adults (Zhang et 
al., 2019) or other insect eggs (Qi, Wang, Xu, & Kang, 2007) when 
exposed at subzero temperatures for a short period as long as they 
were exposed with water. However, long‐time exposure of insect 
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eggs at low temperature in dry soil may be an essential factor of 
egg mortality due to their frost susceptibility (Qi et al., 2007). Cold 
and dry environments thus represent potential intense selective 
pressure on Ae. albopictus egg overwintering survival. Accordingly, 
we detected adaptive genetic variation in relation to precipitation 
during cold periods in European populations, suggesting postintro‐
duction adaptive changes to overcome these unsuitable environ‐
mental conditions. For example, the winters experienced in Albania 
and Montenegro are cold and wet (Petrić et al., 2018), with an av‐
erage of 124 mm of precipitation in January compared to an aver‐
age of 52 mm for other locations in Europe for the same range of 
minimum temperatures during the coldest month, and populations 
in these regions show the highest proportion of mutations in genes 
detected as putatively under divergent selection (Figure 5). One of 
the adaptive loci is located in a gene encoding a heat‐shock protein 
(Hsp) homologue. Hsps are often upregulated during insect dia‐
pause (Chen, Kayukawa, Monteiro, & Ishikawa, 2005; Gkouvitsas, 
Kontogiannatos, & Kourti, 2009; Rinehart et al., 2007; Rinehart et 
al., 2007; Yocum, 2001; Yocum et al., 2005). The homologous pro‐
tein detected is the Hsp70 cognate, Hsc70, which is upregulated in 
a wide range of diapausing insects (Chen et al., 2005; Gkouvitsas et 
al., 2009; Rinehart et al., 2007; Rinehart et al., 2007; Yocum, 2001; 
Yocum et al., 2005) and during acute cold exposure in Ae. albopictus 
(Zhang et al., 2019). In addition to the different adaptive strategies 
to prevent damages induced by ice formation (Armbruster, 2016; 
Kreß, Kuch, Oehlmann, & Müller, 2016), Hsps could contribute sig‐
nificantly to the invasive success of Ae. albopictus by increasing over‐
wintering survival of eggs at low temperature.

Examining the spatial distribution of genetic variation at can‐
didate loci, Ae. albopictus populations established in Albania did 
not expand a lot (Montenegro, Serbia, and Greece; Sherpa, Blum, 
Capblancq, et al., 2019). Extrapolating the predicted allelic fre‐
quency from precipitation during winters, this result suggests that 
not only the political and commercial isolation, and the prolonged 
history of reduced genetic diversity, have restricted Albanian 
populations to their initial area of introduction (Sherpa, Blum, 
Capblancq, et al., 2019) but also the low proportion of suitable 
areas for those populations in Europe. Bottlenecked populations 
generally have low genetic diversity, which should reduce their fit‐
ness and adaptive potential (Lee, 2002; Prentis, Wilson, Dormontt, 
Richardson, & Lowe, 2008; Rius & Darling, 2014). However, sev‐
eral mechanisms related to the demographic history of European 
invasive populations could have promoted adaptation. An alter‐
native explanation to selection for the observed genetic shift be‐
tween Albania and China is a purely demographic effect during the 
invasion process. The substantial bottleneck during the introduc‐
tion in Albania (Sherpa, Blum, Capblancq, et al., 2019) could have 
allowed the expression of beneficial alleles, previously masked by 
the expression of other alleles lost during founder event (Blows & 
Hoffmann, 2005). Primarily introduced populations in North Italy 
did not widely expand (Slovenia, Switzerland) while those estab‐
lished in Central Italy, which received genetic input from China and 
North Italy dispersed throughout the western Mediterranean basin 

(Sherpa, Blum, Capblancq, et al., 2019). Founding admixture gener‐
ated novel genetic combinations allowing populations to establish 
in various niches in the environmental space of their two sources 
(Figure 2), further supporting the role of multiple introductions in 
promoting invasiveness (Dlugosch, Anderson, Braasch, Cang, & 
Gillette, 2015; Rius & Darling, 2014).

5  | CONCLUSIONS

Following our initial reports on the role of genetic diversity in in‐
vasive populations (propagule pressure, genetic admixture) and 
preexisting adaptations within the native range (cold adaptation; 
Sherpa, Blum, Capblancq, et al., 2019; Sherpa, Blum, & Després, 
2019), we evaluated whether niche characteristics could also be 
an essential predictor of Ae. albopictus invasive success in Europe. 
We confirm that niche conservatism is the typical pattern in Ae. al‐
bopictus invasion process (Cunze et al., 2018), which seems to be 
dominant among invasions in similar climate areas (Guisan et al., 
2014). This result together with the apparent low conservatism be‐
tween the environmental niches in Europe and Japan suggests that 
invasive populations retain the niche of their US source where the 
niche shift occurred, as Ae. albopictus has not directly been intro‐
duced in Europe from Japan (Sherpa, Blum, Capblancq, et al., 2019). 
However, niche differences observed between US populations and 
their sources (Figure S4), or the native Asian range (Medley, 2010), 
are probably due to niche unfilling (Cunze et al., 2018). Despite 
niche conservatism characterizes the European and North American 
invasions, the rapid evolution of traits (Europe: present study; Kreß 
et al., 2016, United States: Urbanski et al., 2012; Armbruster, 2016; 
Medley, Westby, & Jenkins, 2019) suggests genetic shift from stand‐
ing variation in response to new selective pressures encountered in 
the invaded area. Adaptive shifts could relate to niche differences 
induced by niche conservatism. Indeed, preexisting adaptation in 
source populations can promote the colonization of a wide range of 
habitats under the same climate, such as the cold adaptation for in‐
vading temperate regions observed in Ae. albopictus (Hawley, 1988; 
Sherpa, Blum, & Després, 2019). The allelic shifts from standing var‐
iation observed after introduction reflect fine‐tuning adaptations to 
the local conditions encountered in the introduced range, already 
present in their ancestral niche.

The adaptive potential of invasive populations is likely to repre‐
sent an essential component of the invasion process. In the present 
study, we show that the geographical distribution of invasive popu‐
lations correlates with their adaptive genetic composition. The ab‐
sence of Ae. albopictus in cold and drought areas could either suggest 
that the short time frame since introduction was not sufficient for 
Ae. albopictus to reach these areas or that adaptation required to 
invade these regions did not or will not occur. These two hypothe‐
ses have contrasted implications for studies predicting the potential 
distribution of invasive species. Nonetheless, invasive species distri‐
bution models are classically predicted from occurrence and envi‐
ronmental data only and do not account for their adaptive and thus 
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invasive potential. Observed genetic shift and niche conservatism 
together with the estimation that about 80% of Ae. albopictus poten‐
tial geographical distribution is yet unfilled, suggest further spread 
of Ae. albopictus in Europe. The expected allelic turnover at adaptive 
loci at the scale of the fitted gradient could be used to refine the 
degree of suitability for the establishment of invasive populations, as 
well as in species distribution under climate change (Peterson, Doak, 
& Morris, 2019).
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