34 research outputs found

    Engineering and Assessing Cardiac Tissue Complexity

    Get PDF
    Cardiac tissue engineering is very much in a current focus of regenerative medicine research as it represents a promising strategy for cardiac disease modelling, cardiotoxicity testing and cardiovascular repair. Advances in this field over the last two decades have enabled the generation of human engineered cardiac tissue constructs with progressively increased functional capabilities. However, reproducing tissue-like properties is still a pending issue, as constructs generated to date remain immature relative to native adult heart. Moreover, there is a high degree of heterogeneity in the methodologies used to assess the functionality and cardiac maturation state of engineered cardiac tissue constructs, which further complicates the comparison of constructs generated in different ways. Here, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, and types of engineering strategies utilized to date. Moreover, we discuss the main functional assays used to evaluate the cardiac maturation state of the constructs, both at the cellular and the tissue levels. We trust that researchers interested in developing engineered cardiac tissue constructs will find the information reviewed here useful. Furthermore, we believe that providing a unified framework for comparison will further the development of human engineered cardiac tissue constructs displaying the specific properties best suited for each particular application

    Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality

    Get PDF
    In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term “CardioSlice.” PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.Peer ReviewedPostprint (published version

    Pseudomonas aeruginosa Community-Onset Bloodstream Infections: Characterization, Diagnostic Predictors, and Predictive Score Development—Results from the PRO-BAC Cohort

    Get PDF
    Pseudomonas aeruginosa; Infección del torrente sanguíneo; EpidemiologíaPseudomones aeruginosa; Infecció del torrent sanguini; EpidemiologiaPseudomonas aeruginosa; Bloodstream infection; EpidemiologyCommunity-onset bloodstream infections (CO-BSI) caused by gram-negative bacilli are common and associated with significant mortality; those caused by Pseudomonas aeruginosa are associated with worse prognosis and higher rates of inadequateempirical antibiotic treatment. The aims of this study were to describe the characteristics of patients with CO-BSI caused by P. aeruginosa, to identify predictors, and to develop a predictive score for P. aeruginosa CO-BSI. Materials/methods: PROBAC is a prospective cohort including patients >14 years with BSI from 26 Spanish hospitals between October 2016 and May 2017. Patients with monomicrobial P. aeruginosa CO-BSI and monomicrobial Enterobacterales CO-BSI were included. Variables of interest were collected. Independent predictors of Pseudomonas aeruginosa CO-BSI were identified by logistic regression and a prediction score was developed. Results: A total of 78patients with P. aeruginosa CO-BSI and 2572 with Enterobacterales CO-BSI were included. Patients with P. aeruginosa had a median age of 70 years (IQR 60-79), 68.8% were male, median Charlson score was 5 (IQR 3-7), and 30-daymortality was 18.5%. Multivariate analysis identified the following predictors of CO-BSI-PA [adjusted OR (95% CI)]: male gender [1.89 (1.14-3.12)], haematological malignancy [2.45 (1.20-4.99)], obstructive uropathy [2.86 (1.13-3.02)], source of infection other than urinary tract, biliary tract or intra-abdominal [6.69 (4.10-10.92)] and healthcare-associated BSI [1.85 (1.13-3.02)]. Anindex predictive of CO-BSI-PA was developed; scores ≥ 3.5 showed a negative predictive value of 89% and an area under the receiver operator curve (ROC) of 0.66. Conclusions: We did not find a good predictive score of P. aeruginosa CO-BSI due to its relatively low incidence in the overall population. Our model includes variables that are easy to collect in real clinical practice and could be useful to detect patients with very low risk of P. aeruginosa CO-BSI

    Engineered Macroscale Cardiac Constructs Elicit Human Myocardial Tissue-like Functionality

    Get PDF
    In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term "CardioSlice." PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients

    Generation of an induced pluripotent stem cell line (ESi107-A) from a transthyretin amyloid cardiomyopathy (ATTR-CM) patient carrying a p.Ser43Asn mutation in the TTR gene

    Get PDF
    Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a life-threatening disease caused by the abnormal production of misfolded TTR protein by liver cells, which is then released systemically. Its amyloid deposition in the heart is linked to cardiac toxicity and progression toward heart failure. A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) from a patient suffering familial transthyretin amyloid cardiomyopathy carrying a c.128G>A (p.Ser43Asn) mutation in the TTR gene. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for therapeutic discovery

    New strategies for echocardiographic evaluation of left ventricular function in a mouse model of long-term myocardial infarction

    Get PDF
    In summary, we have performed a complete characterization of LV post-infarction remodeling in a DBA/2J mouse model of MI, using parameters adapted to the particular characteristics of the model In the future, this well characterized model will be used in both investigative and pharmacological studies that require accurate quantitative monitoring of cardiac recovery after myocardial infarction

    COVID-19 vaccine effectiveness against hospitalization due to SARS-CoV-2: A test-negative design study based on Severe Acute Respiratory Infection (SARI) sentinel surveillance in Spain

    Get PDF
    Background: With the emergence of SARS-CoV-2, influenza surveillance systems in Spain were transformed into a new syndromic sentinel surveillance system. The Acute Respiratory Infection Surveillance System (SiVIRA in Spanish) is based on a sentinel network for acute respiratory infection (ARI) surveillance in primary care and a network of sentinel hospitals for severe ARI (SARI) surveillance in hospitals. Methods: Using a test-negative design and data from SARI admissions notified to SiVIRA between January 1 and October 3, 2021, we estimated COVID-19 vaccine effectiveness (VE) against hospitalization, by age group, vaccine type, time since vaccination, and SARS-CoV-2 variant. Results: VE was 89% (95% CI: 83-93) against COVID-19 hospitalization overall in persons aged 20 years and older. VE was higher for mRNA vaccines, and lower for those aged 80 years and older, with a decrease in protection beyond 3 months of completing vaccination, and a further decrease after 5 months. We found no differences between periods with circulation of Alpha or Delta SARS-CoV-2 variants, although variant-specific VE was slightly higher against Alpha. Conclusions: The SiVIRA sentinel hospital surveillance network in Spain was able to describe clinical and epidemiological characteristics of SARI hospitalizations and provide estimates of COVID-19 VE in the population under surveillance. Our estimates add to evidence of high effectiveness of mRNA vaccines against severe COVID-19 and waning of protection with time since vaccination in those aged 80 or older. No substantial differences were observed between SARS-CoV-2 variants (Alpha vs. Delta).The data of the study was originally collectedas part of the following projects run by the European Centre for Disease Prevention and Control:“Establishing Severe Acute Respiratory Infections (SARI) surveillance and performing hospital-based COVID-19 transmission studies”, “Developing an infrastructure and performing vaccine effectiveness studies for COVID-19 vaccines in the EU/EEA”, and the “Vaccine Effectiveness, Burden and Impact Studies(VEBIS) of COVID-19 and Influenza".S

    Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve.

    Get PDF
    The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.This study was supported by grants PID2019-104776RB-I00 and PID2020-120326RB-I00, CB16/11/00399 (CIBER CV) financed by MCIN/AEI/10.13039/501100011033, a grant from the Fundación BBVA (Ref. BIO14_298), and a grant from Fundació La Marató de TV3 (Ref. 20153431) to J.L.d.l.P. M.S.-A. was supported by a PhD contract from the Severo Ochoa Predoctor-al Program (SVP-2014-068723) of the MCIN/AEI/10.13039/501100011033. J.R.G.-B. was supported by SEC/FEC-INV-BAS 21/021. A.R. was funded by grants from MCIN (PID2021123925OB-I00), TerCel (RD16/0011/0024), AGAUR (2017-SGR-899), and Fundació La Marató de TV3 (201534-30). J.M.P.-P. was supported by RTI2018-095410-B-I00 (MCIN) and PY2000443 (Junta de Andalucía). B.I. was supported by the European Commission (H2020-HEALTH grant No. 945118) and by MCIN (PID2019-107332RB-I00). DO’R was sup-ported by the Medical Research Council (MC-A658-5QEB0) and KAMcG by the British Heart Foundation (RG/19/6/34387, RE/18/4/34215). The cost of this publication was supported in part with funds from the European Regional Devel-opment Fund. The Centro Nacional de Investigaciones Cardiovasculares is sup-ported by the ISCIII, the MCIN, and the Pro Centro Nacional de Investigaciones Cardiovasculares Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020001041-S) financed by MCIN/AEI/10.13039/501100011033. For the purpose of open access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising.S

    Fabrication of human myocardium using multidimensional modelling of engineered tissues

    Get PDF
    Biofabrication of human tissues has seen a meteoric growth triggered by recent technical advancements such as human induced pluripotent stem cells (hiPSCs) and additive manufacturing. However, generation of cardiac tissue is still hampered by lack of adequate mechanical properties and crucially by the often unpredictable post-fabrication evolution of biological components. In this study we employ melt electrowriting (MEW) and hiPSC-derived cardiac cells to generate fibre-reinforced human cardiac minitissues. These are thoroughly characterized in order to build computational models and simulations able to predict their post-fabrication evolution. Our results show that MEW-based human minitissues display advanced maturation 28 post-generation, with a significant increase in the expression of cardiac genes such as MYL2, GJA5, SCN5A and the MYH7/MYH6 and MYL2/MYL7 ratios. Human iPSC-cardiomyocytes are significantly more aligned within the MEW-based 3D tissues, as compared to conventional 2D controls, and also display greater expression of C ×43. These are also correlated with a more mature functionality in the form of faster conduction velocity. We used these data to develop simulations capable of accurately reproducing the experimental performance. In-depth gauging of the structural disposition (cellular alignment) and intercellular connectivity (C ×43) allowed us to develop an improved computational model able to predict the relationship between cardiac cell alignment and functional performance. This study lays down the path for advancing in the development of in silico tools to predict cardiac biofabricated tissue evolution after generation, and maps the route towards more accurate and biomimetic tissue manufacture
    corecore