96 research outputs found

    Density imaging of heterochromatin in live cells using orientation-independent-DIC microscopy

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 28 (2017): 3349-3359, doi:10.1091/mbc.E17-06-0359.In eukaryotic cells, highly condensed inactive/silenced chromatin has long been called “heterochromatin.” However, recent research suggests that such regions are in fact not fully transcriptionally silent and that there exists only a moderate access barrier to heterochromatin. To further investigate this issue, it is critical to elucidate the physical properties of heterochromatin such as its total density in live cells. Here, using orientation-independent differential interference contrast (OI-DIC) microscopy, which is capable of mapping optical path differences, we investigated the density of the total materials in pericentric foci, a representative heterochromatin model, in live mouse NIH3T3 cells. We demonstrated that the total density of heterochromatin (208 mg/ml) was only 1.53-fold higher than that of the surrounding euchromatic regions (136 mg/ml) while the DNA density of heterochromatin was 5.5- to 7.5-fold higher. We observed similar minor differences in density in typical facultative heterochromatin, the inactive human X chromosomes. This surprisingly small difference may be due to that nonnucleosomal materials (proteins/RNAs) (∼120 mg/ml) are dominant in both chromatin regions. Monte Carlo simulation suggested that nonnucleosomal materials contribute to creating a moderate access barrier to heterochromatin, allowing minimal protein access to functional regions. Our OI-DIC imaging offers new insight into the live cellular environments.This work was supported by MEXT and Japan Society for the Promotion of Science (JSPS) grants (Nos. 23115005 and 16H04746, respectively), as well as a Japan Science and Technology Agency (JST) CREST grant (No. JPMJCR15G2). R.I. and T.N. are JSPS Fellows. R.I. was supported by the SOKENDAI Short-Stay Study Abroad Program in fiscal year 2016

    Purinergic P2Y(6) receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II-induced hypertension

    Get PDF
    The angiotensin (Ang) type 1 receptor (AT1R) promotes functional and structural integrity of the arterial wall to contribute to vascular homeostasis, but this receptor also promotes hypertension. In our investigation of how Ang II signals are converted by the AT1R from physiological to pathological outputs, we found that the purinergic P2Y6 receptor (P2Y6R), an inflammation-inducible G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor (GPCR), promoted Ang II–induced hypertension in mice. In mice, deletion of P2Y6R attenuated Ang II–induced increase in blood pressure, vascular remodeling, oxidative stress, and endothelial dysfunction. AT1R and P2Y6R formed stable heterodimers, which enhanced G protein–dependent vascular hypertrophy but reduced β-arrestin–dependent AT1R internalization. Pharmacological disruption of AT1R-P2Y6R heterodimers by the P2Y6R antagonist MRS2578 suppressed Ang II–induced hypertension in mice. Furthermore, P2Y6R abundance increased with age in vascular smooth muscle cells. The increased abundance of P2Y6R converted AT1R-stimulated signaling in vascular smooth muscle cells from β-arrestin–dependent proliferation to G protein–dependent hypertrophy. These results suggest that increased formation of AT1R-P2Y6R heterodimers with age may increase the likelihood of hypertension induced by Ang II

    Overexpression of TFAM or Twinkle Increases mtDNA Copy Number and Facilitates Cardioprotection Associated with Limited Mitochondrial Oxidative Stress

    Get PDF
    Background Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF. Methods and Results Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice. Conclusions The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.Peer reviewe

    Power Generation from Sewage by a Micro-Hydraulic Turbine

    No full text
    This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function

    Targeted deletion of p53 prevents cardiac rapture after myocardial infarction in mice

    Get PDF
    Objective Apoptosis may play an important role in cardiac remodeling after myocardial infarction (MI). p53 is a well-known proapoptotic factor. However, its pathophysiological significance in these conditions remains unclear. We thus examined the effects of target deletion of the p53 gene on post-MI hearts. Methods Anterior MI was created in male heterozygous p53-deficient (p53+/−; n = 28) mice and sibling wild-type (p53+/+; n = 29) mice by ligating the left coronary artery. Results By day 7, p53+/− mice had significantly better survival rate than p53+/+ mice (89% vs. 69%, P < 0.05). Notably, p53+/− mice had a significantly lower incidence of left ventricular (LV) rupture (7% vs. 28%, P < 0.05) despite comparable infarct size (60 ± 2% vs. 59 ± 2%, P = NS), heart rate (488 ± 15 vs. 489 ± 17 bpm, P = NS), or mean arterial blood pressure (80 ± 2 vs. 78 ± 3 mm Hg, P = NS). The extent of infiltrating interstitial cells including macrophages into the post-MI hearts was not altered by the deletion of p53. Further, collagen deposition as well as the zymographic MMP-2 and -9 activities were comparable between p53+/− and p53+/+ mice with MI. However, the p53+/− mice had a significantly thicker infarct wall. The number of TUNEL-positive cells in the infarct area was significantly lower in p53+/− mice than in p53+/+ mice (423 ± 86 vs. 1330 ± 275/105 cells, P < 0.01). Conclusions p53 is involved in cardiac rupture after MI, probably via the induction of a proapoptotic pathway. The inhibition of p53 may be a potentially useful therapeutic strategy to manage post-MI patients

    Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure.

    Get PDF
    BACKGROUND: Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. METHODOLOGY/PRINCIPAL FINDINGS: MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. CONCLUSIONS: Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure

    Fatal Cardiac Hemochromatosis in a Patient with Hereditary Spherocytosis

    No full text
    corecore