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Abstract

Myocardial mitochondrial DNA (mtDNA) copy number decreases in heart failure. In post-myocardial infarction mice,
increasing mtDNA copy number by overexpressing mitochondrial transcription factor attenuates mtDNA deficiency and
ameliorates pathological remodeling thereby markedly improving survival. However, the functional significance of
increased mtDNA copy number in hypertensive heart disease remains unknown. We addressed this question using
transgenic mice that overexpress Twinkle helicase (Twinkle; Tg), the mtDNA helicase, and examined whether Twinkle
overexpression protects the heart from left ventricular (LV) remodeling and failure after pressure overload created by
transverse aortic constriction (TAC). Twinkle overexpression increased mtDNA copy number by 2.260.1-fold. Heart weight,
LV diastolic volume and wall thickness were comparable between Tg and wild type littermates (WT) at 28 days after TAC
operation. LV end-diastolic pressure increased in WT after TAC (8.662.8 mmHg), and this increase was attenuated in Tg
(4.662.6 mmHg). Impaired LV fractional shortening after TAC operation was also suppressed in Tg, as measured by
echocardiography (WT: 16.267.2% vs Tg: 20.766.2%). These LV functional improvements were accompanied by a decrease
in interstitial fibrosis (WT: 10.661.1% vs Tg: 3.060.6%). In in vitro studies, overexpressing Twinkle using an adenovirus
vector in cultured cardiac fibroblasts significantly suppressed mRNA of collagen 1a, collagen 3a and connective tissue
growth factor, and angiotensin II-induced transforming growth factor b1 expression. The findings suggest that Twinkle
overexpression prevents LV function deterioration. In conclusion, Twinkle overexpression increases mtDNA copy number
and ameliorates the progression of LV fibrosis and heart failure in a mouse pressure overload model. Increasing mtDNA
copy number by Twinkle overexpression could be a novel therapeutic strategy for hypertensive heart disease.
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Introduction

Heart failure is the end-stage of various heart conditions and

diseases, and has become a major public health problem in most

countries. [1,2]. Hypertension is a common risk factor for heart

failure, followed closely by antecedent myocardial infarction.

Seventy-five percent of heart failure cases have antecedent

hypertension [1]. Hypertension affects approximately one billion

people worldwide [3]. Sustained cardiac pressure overload induces

cellular, molecular and morphologic remodeling and maladapta-

tions contributing to progressive cardiac dysfunction and heart

failure [4]. However, except antihypertensive drugs, there is no

known effective medical treatment to attenuate pressure overload-

induced cardiac remodeling. New therapeutic strategies to prevent

maladaptive remodeling and subsequent progression to heart

failure in hypertensive heart disease are highly desirable.

Mitochondrial dysfunction has been reported in various forms

of heart failure. Especially, mitochondrial DNA (mtDNA) copy

number is decreased in the heart of post-myocardial infarction

mice [5] and pressure overload models [6]. In humans,

Karamanlidis et al. [7] demonstrated that mitochondrial biogen-

esis is severely impaired in myocardial tissues collected from

patients with end-stage heart failure of various etiologies. In a

mouse post-myocardial infarction model, overexpression of

mitochondrial transcription factor A by a transgenic approach

ameliorated the decrease in mtDNA copy number and patholog-

ical remodeling, dramatically improving survival [8]. These

findings indicate that increasing mtDNA copy number attenuates

cardiac pathological remodeling and failure. However, the

functional significance of increased mtDNA copy number under

pressure overload condition has not been established.

In this study, we addressed this question using transgenic mice

that overexpress Twinkle, the mtDNA helicase. Previous study

showed that systemic overexpression of Twinkle increases mtDNA

copy number in muscle and heart up to 3-fold of control levels,

more than any other factors reported to date [9]. Twinkle is

known to co-localize with mtDNA in mitochondrial nucleoids that

are stable assemblies of nucleoproteins and mtDNA. Twinkle
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displays 59 to 39 DNA helicase activity in vitro, supporting its role in

unwinding the mtDNA replication fork [10]. Dominant mutations

of Twinkle are associated with progressive external ophthalmo-

plegia with multiple mtDNA deletions [11]. Reduced Twinkle

expression by RNA interference also mediates a rapid drop in

mtDNA copy number, supporting the in vivo results [9]. These

data demonstrate that Twinkle is essential for mtDNA mainte-

nance, and that it may be a key regulator of mtDNA copy number

in mammals [9,12].

In a pilot study, we have confirmed that overexpressing Twinkle

in mice by a transgenic approach inhibits cardiac remodeling and

improves survival after experimental myocardial infarction

(unpublished data). However, the functional significance of

increased Twinkle in pressure overload-induced cardiac remodel-

ing remains unclear. In this study, we examined whether Twinkle

overexpression protects the heart from left ventricular (LV)

remodeling and failure in a mouse pressure overload model

created by transverse aortic constriction (TAC).

Materials and Methods

Ethics Statement
All procedures and animal care were approved by the

Committee on Ethics of Animal Experiment, Kyushu University

Graduate School of Medical and Pharmaceutical Sciences (Permit

number: A22–075), and performed in accordance with the

Guideline for Animal Experiment of Kyushu University, and the

Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health (NIH Publication No. 85-23,

revised 1996).

Animal Experiments
We utilized transgenic mice that overexpress mouse Twinkle

helicase (Tg) as described previously [9]. The animals were kept in

12-hour light-dark cycle and had access to food and water ad

libitum. Ten week-old male Tg and wild type littermates (WT)

underwent TAC as described previously with a slight modification

[13]. Briefly, mice were anesthetized with sodium pentobarbital

(35 mg/kg intraperitoneally) and intubated endotracheally. The

chest was opened and the aortic arch was identified after blunt

dissection through the intercostal muscles. A 8-0 silk suture was

placed around the transverse aorta and tied with a 26-gauge blunt

needle, which was immediately removed. We used a 26-gauge and

tied the suture as tightly as possible to create similar degree of

pressure gradient in all mice. Sham-operated mice underwent a

similar surgical procedure without aortic constriction. Animals

were anesthetized and euthanized 28 days after TAC for

physiological, biochemical and histological studies.

A group of investigators performed tail clippings, and used the

tissue samples in genotyping using polymerase chain reaction

(PCR). Another group of investigators who were not informed of

the genotyping results performed TAC. Animals were identified by

numeric codes and assigned to experimental groups.

PCR Analyses
We quantified mtDNA copy number and mRNA expression in

the heart and cardiac fibroblasts by real-time PCR analyses as

described previously [14,15]. Heart samples were homogenized,

and total DNA was extracted by DNeasy Blood & Tissue Kit

(Qiagen). Total DNA was treated with BamHI (Takara) for 6

hours and used in quantitative PCR to estimate the relative

quantity of mtDNA. The 30-ml PCR mixture contained 5 ng of

total DNA and 12 pmol each of the primers (59-TGTAAGCCG-

GACTGCTAATG-39 and 39-AGCTGGAGCCGTAATTA-

CAG-59 for mtDNA). As an internal standard, ribosomal protein

L27 (RPL27) gene was amplified in a 30-ml reaction mixture

containing 5 ng of total DNA and 12 pmol each of the primers (59-

CCTCATGCCCACAAGGTACTC-39 and 39-

TCGCTCCTCAAACTTGACC-59). The amount of mtDNA

was adjusted to the amount of genomic DNA. All reactions were

performed with SYBR Premix Ex Taq II (Takara) and Applied

Biosystems 7500 Real-Time PCR system (Applied Biosystems)

according to the manufacture’s protocol.

Heart samples for RNA analysis were stored in RNAlater

(Ambion). After homogenization, total RNA was extracted with

RNeasy Mini Kit (Qiagen). After reverse transcription with

ReverTra Ace qPCR RT kit (Toyobo), the relative amount of

cDNA was quantified using a 30-ml reaction mixture containing

10 ng of total cDNA and 12 pmol each of the primers [59-

GACTGGCAACCTCAAGAAGG-39 and 39-

GACTGTCTTGCCCCAAGTTC-59 for collagen 1a (COL1a),

59-CTGTAACATGGAAACTGGGGAAA-39 and 39-CCA-

TAGCTGAACTGAAAACCACC-59 for collagen 3a (COL3a),

and 59-TGCAGACTGGAGAAGCAGAG-39 and 39-CGATTT-

TAGGTGTCCGGATG-59 for connective tissue growth factor

(CTGF)]. We used hypoxanthine guanine phosphoribosyl trans-

ferase (HPRT) gene as an internal standard (primers: 59-

CTGGTGAAAAGGACCTCTCG-39 and 39-AACTTGCGCT-

CATCTTAGGC-59). In in vitro analyses, the relative amount of

cDNA was quantified using a 30-ml reaction mixture containing

10 ng of total cDNA and 12 pmol each of the primers (59-

CATTGCTGTCCCGTGCAGA-39 and 39-AGGTAACGC-

CAGGAATTGTTGCTA-59) for transforming growth factor b1
(TGF-b1). We used ribosomal protein S18 (18S) gene as an

internal standard (primers: 59-AAGTTTCAGCACATCCTGC-

GAGTA-39 and 39-TTGGTGAGGTCAATGTCTGCTTTC-

59).

Mitochondrial Isolation and Blue Native Gel
Electrophoresis
We measured mitochondrial protein and enzyme activity as

described previously [16,17]. Hearts were homogenized in ice-cold

HIM buffer (200 mM mannitol, 70 mM sucrose, 10 mM HEPES,

1 mM EGTA, adjusted to pH 7.5 with KOH) using a zero-

clearance Teon pestle, and centrifuged at 6006g for 20 minutes.

The supernatant was further centrifuged at 6006g for 20 minutes

and at 100006g for 10 minutes. The resulting mitochondrial pellet

was washed with HIM buffer and centrifuged again at 100006g

for 10 minutes. The pellet was resuspended in phosphate-buffered

saline containing a protease inhibitor cocktail, and the protein

concentration was determined. Native gradient gels (5–12%) were

casted and run according to the protocol described previously

[18]. Mouse monoclonal antibodies against complexes I (MS111,

1:1000), II (MS204, 1:10000), and III (MS302, 1:1000) from

Mitosciences were diluted in Tris-buffered saline containing 0.1%

Tween and 5% milk. Equal amount of mitochondrial protein

extract (2.5 mg) from each group was loaded per well. We

normalized complexes I and III protein levels and complex I

activity against those of complex II.

Echocardiographic and Hemodynamic Measurements
We performed in vivo analyses of mice as described previously

[8,19]. On day 28 after TAC surgery, echocardiographic studies

were performed under anesthesia with a mixture of medetomidine

(0.3 mg/kg), midazolam (4 mg/kg) and butorphanol tartrate

(5 mg/kg), and spontaneous respiration. A 2D parasternal short-

axis view of the LV was obtained at the level of the papillary

muscles by applying the transducer lightly to the mid-upper left
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anterior chest wall. After ensuring that the image was on axis

(based on roundness of the LV cavity), 2D targeted M-mode

tracings were recorded at a paper speed of 50 mm/s. Anterior,

posterior end diastolic wall thickness and LV internal dimensions

were measured. While under anesthesia, a 1.4 Fr micromanom-

eter-tipped catheter (Millar Instruments) was inserted into the right

carotid artery and advanced into the LV to measure pressures for

the assessment of aortic pressure and LV end diastolic pressure.

Histopathological Studies
After in vivo echocardiographic and hemodynamic studies, the

heart was excised and weighed, and dissected into the right and

left ventricles, including the septum. The heart tissues were fixed in

6% formaldehyde, embedded in paraffin, and cut into 5 mm thick

sections. Sections were stained with hematoxylin-eosin and

Masson’s trichrome for assessments of myocyte cross-sectional

area and collagen volume fraction [13]. To measure the myocyte

cross-sectional area, each section was photographed under a

microscope (DMD108, Leica Microsystems) at a final magnifica-

tion of 2006. The profiles of 30 to 40 myocytes cut in cross-

sections were traced manually and digitized. The digitized profiles

were transferred to a personal computer that calculated the area.

Three to 4 fields were randomly selected from 3 coronal sections of

each heart. Thus, 100 to 200 myocytes were measured for each

animal, and the mean myocyte cross-sectional area was calculated.

Collagen volume fraction was measured in 6 fields randomly

selected from each coronal section (basal, mid and apical sections)

in each animal. Each field was photographed under a microscope

at a final magnification of 2006, and subjected to color threshold

analysis. Collagen volume fraction for the heart was calculated as

the sum of all connective tissue areas divided by the sum of all

connective tissue and muscle areas in all fields. Collagen

surrounding intramyocardial coronary arteries was excluded from

analysis.

Plasmid Construction
Small-interfering RNA (siRNA) targeting rat Twinkle helicase

(si-rTwinkle) was synthesized by Takara (Shiga, Japan). The si-

rTwinkle gene was sub-cloned into unique BamHI and HindIII

sites of pBAsicDNA Vector (Takara, pBAsi-rTwinkle). The full

length human Twinkle helicase complimentary DNA (cDNA,

hTwinkle) was amplified by PCR with primers containing XbaI

and HindIII sites extracted from the placenta human cDNA

library. The cDNA library was provided by the Department of

Clinical Chemistry and Laboratory Medicine, Graduate School of

Medical Sciences, Kyushu University. The PCR product was sub-

cloned into distinctive XbaI and HindII sites of the pcDNA3.1

Expression Vector (Invitrogen, pcDNAhTwinkle). The pBAsi-

rTwinkle and pcDNAhTwinkle were amplified, sequenced and

used for constructing adenovirus [20].

Adenovirus Transduction
Replication-deficient recombinant adenovirus vectors contain-

ing hTwinkle (AxCAhTwinkle), si-rTwinkle (AxCAsi-rTwinkle) or

Escherichia coli LacZ cDNA (AxCALacZ) were constructed using

Adenovirus Expression Vector Kit Ver. 2 (Takara) according to

manufacturer’s protocol. Adenoviruses were amplified in human

embryonic kidney cell line (HEK-293, RIKEN BIORESOURCE

CENTER, Cell No. RCB1637) purified with the Adeno-X Maxi

purification Kit (Clontech) and then titrated with the Adeno-X

Rapid Titer kit (Clontech). The efficiency of virus infection was

.95%, as measured by b-gal staining.

In vitro Experiments
Primary culture of neonatal rat cardiac fibroblasts was prepared

from the ventricles of neonatal Sprague-Dawley rats as described

previously [15,21]. Briefly, neonatal rats were euthanized by

decapitation under anesthesia with isoflurane, after which the

hearts were rapidly excised and digested. Anesthesia depth was

monitored by limb withdrawal in response to toe pinching. After

digesting the myocardial tissue with trypsin (Wako) and collage-

nase type 2 (Worthington), cells were suspended in Dulbecco’s

Modified Eagle’s Medium (DMEM, Sigma-Aldrich) containing

10% fetal bovine serum (Thermo SCIENTIFIC), penicillin

(Invitrogen) and streptomycin (Invitrogen), and plated in

100 mm culture dishes for 70 minutes to remove non-adherent

cardiac myocytes. Adherent cardiac fibroblasts were maintained at

37uC in humidified air with 5% CO2. Considering the possibility

that cardiac fibroblasts may lose the original characteristics after

prolonged culture, cells were used within 2 passages in all

experiments. Cells were infected with AxCAhTwinkle, AxCAsi-

rTwinkle or AxCALacZ (multiplicity of infection; 1) in serum-free

DMEM for 1 hour, and cultured for another 72 hours in DMEM

containing 5% fetal bovine serum. Then the cells were stimulated

with angiotensin II (AngII, Sigma-Aldrich, 1 mM) for 24 hours,

and collected for mRNA analyses.

Statistical Analysis
All data were expressed as mean 6 SEM. Between-group

comparison of means was performed by one-way analysis of

variance followed by Bonferroni’s post-hoc test. A P-value less than

0.05 was considered to be statistically significant.

Results

mtDNA Copy Number and Mitochondrial Enzyme
Activity
We first examined the mitochondrial characteristics in Tg and

WT that were sham-operated or underwent TAC. mtDNA copy

number increased significantly in Tg compared to WT, both in

sham-operated (2.2-fold, P,0.01) and TAC groups (2.9-fold,

P,0.01). mtDNA copy number tended to decrease on day 28 after

TAC in both WT (P=0.07 WT-TAC vs. WT-sham) and Tg

(P=0.11, Tg-TAC vs. Tg-sham), although the differences were

not significant in both groups (Figure 1A). Mitochondrial

complexes I and III protein levels and mitochondrial complex I

activity were normalized against those of complex II which is

entirely encoded by the nucleus [16]. Both mitochondrial protein

levels and activities were not affected by Twinkle overexpression,

consistent with previous report [16], and were not altered by TAC

(Figure 1B and C).

Cardiac Function and Structure
Table 1 shows the hemodynamic data and Table 2 shows the

organ weights on day 28 after TAC operation. TAC increased

heart weight and LV weight in both WT and Tg, although there

was no significant differences between Tg-TAC and WT-TAC.

TAC also increased aortic pressure, again with no difference

between Tg-TAC and WT-TAC. Importantly, Twinkle overex-

pression significantly inhibited the increase in LV end-diastolic

pressure caused by TAC-induced pressure overload (P,0.05, Tg-

TAC vs. WT-TAC).

Echocardiographic study showed enlarged LV end-diastolic

dimension after TAC operation in both Tg and WT, with no

significant differences between Tg-TAC and WT-TAC (Figure 2A

and B). There was also no difference in LV wall thickness between

Tg and WT (Figure 2C). However, fractional shortening decreased
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by approximately 60% in WT-TAC compared with WT-sham but

by only 49% in Tg-TAC (P,0.05, Tg-TAC vs. WT-TAC).

Similar results were observed for ejection fraction. These results

suggest relatively preserved LV function in Tg-TAC (Figure 2D

and E). We also found a tendency of LV dysfunction attenuation

in Tg-TAC mice on day 14 after TAC operation (Figure S1).

In histological analyses, we assessed the cross-sectional area of

cardiac myocyte as an index of hypertrophy. Consistent with the

data of LV weight and echocardiographic wall thickness, the cross-

sectional area increased markedly after TAC operation in both Tg

and WT, although there was no significant difference between

Figure 1. mtDNA copy number and mitochondrial enzyme activity. A. mtDNA copy number after sham or TAC operation, quantified by real-
time PCR relative to nuclear genome (RPL27 gene). B. Mitochondrial protein amount and enzyme activity. Mitochondrial protein amount (complexes
I, II and III) and enzyme activity (complex I) of WT (left panels) and Tg (right panels), n = 6 each, were analyzed by blue native gel electrophoresis. C.
The signals for complexes I, III and complex I activity were normalized against those of complex II. Values are mean 6 SEM. Data are presented as
ratio to WT-sham. **; P,0.01 vs WT-sham.
doi:10.1371/journal.pone.0067642.g001

Table 1. Hemodynamic data.

WT-sham Tg-sham WT-TAC Tg-TAC

(n=8) (n=3) (n=11) (n=11)

HR (bpm) 522621 506610 521632 535637

Peak BP (mmHg) 10167 111610 172624** 167621**

Mean BP (mmHg) 8663 77612 11666** 111611**

LVEDP (mmHg) 1.461.4 1.060.5 8.662.8** 4.662.6*{

HR; heart rate, BP; blood pressure, LVEDP; LV end-diastolic pressure.
**; P,0.01,
*; P,0.05 vs WT-sham,
{; P,0.05 vs WT-TAC.
doi:10.1371/journal.pone.0067642.t001

Table 2. Organ weight data.

WT-sham Tg-sham WT-TAC Tg-TAC

(n=17) (n =12) (n=17) (n=16)

Body wt (g) 29.062.9 28.361.8 27.361.6* 27.561.5*

Heart wt/body wt (mg/
g)

4.960.4 4.960.7 6.860.9* 6.460.7*

LV wt/body wt (mg/g) 3.260.3 3.260.3 5.060.9* 4.560.6*

*; P,0.05 vs WT-sham.
doi:10.1371/journal.pone.0067642.t002
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WT-TAC and Tg-TAC (Figure 3A and B). Next we investigated

the progression of fibrosis in myocardium. We found marked

interstitial fibrosis in the myocardium, on day 28 after TAC

operation. Twinkle overexpression significantly suppressed the

TAC-induced increase in fibrosis (P,0.01, Tg-TAC vs. WT-TAC;

Figure 3C and D). Meanwhile, expressions of COL1a, COL3a

and CTGF, which are commonly used markers of fibrosis, tended

to increase in WT-TAC on day 28 after TAC operation, but

Twinkle overexpression tended to inhibit these increase (Figure

S2), supporting our histological result of the inhibition of cardiac

fibrosis.

In vitro Experiments
In order to confirm the alteration of mRNA in fibroblast

specifically, we checked profibrogenic signals in cardiac fibroblast

isolated from neonatal rat heart. We found significant suppression

in all 3 mRNAs, COL1a, COL3a, and CTGF (Figure 4). To

examine the mechanism by which Twinkle overexpression inhibits

cardiac fibrosis in vitro, we prepared rat neonatal cardiac

fibroblasts and stimulated with AngII for 24 hours. AngII

increased TGF-b1 mRNA expression, which is a key regulator

of fibrosis [22,23]. Twinkle overexpression by adenovirus vector

suppressed TGF-b1 expression in cardiac fibroblasts, compared

with LacZ overexpression. In contrast, downregulation of Twinkle

by siRNA, which inhibited Twinkle mRNA by 35% (Figure S3),

exacerbated TGF-b1 expression (Figure 5). These findings suggest

that Twinkle overexpression inhibits cardiac fibrosis by suppress-

ing profibrogenic signals in the myocardium.

Discussion

Hypertension is a major public health problem, affecting

approximately one billion people worldwide [3]. Sustained

pressure overload causes hypertrophic changes in the myocardi-

um. While these changes may represent adaptive remodeling in

the early phase, they eventually progress to maladaptive remod-

eling and exacerbate heart failure. No therapeutic options are

currently available to prevent the progression to maladaptive

remodeling for hypertensive heart disease. We report for the first

time that Twinkle overexpression ameliorates cardiac fibrosis and

heart failure in a mouse pressure overload model. In this study,

Twinkle overexpression did not inhibit myocardial hypertrophy

Figure 2. Echocardiographic analyses. A. Representative M-mode echocardiograms obtained from WT-sham, Tg-sham, WT-TAC, and Tg-TAC.
Arrows indicate LV end-diastolic and end-systolic diameter. Scale bar = 100 msec (horizontal) and 1 mm (vertical). B-E. Summary data for
echocardiographic measurements in 4 groups of animals: LV end-diastolic diameter (B), interventricular septal thickness (C), percent fractional
shortening (D) and percent left ventricular ejection fraction (E). Values are mean 6 SEM. *; P,0.05 vs WT-sham, {; P,0.05 vs WT-TAC. LVDd; LV end-
diastolic diameter, IVS; interventricular septum, FS; fractional shortening, EF; ejection fraction.
doi:10.1371/journal.pone.0067642.g002
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Figure 3. Histopathological analyses. A. Representative photomicrographs of hematoxylin-eosin-stained LV cross-sections obtained from 4
groups of animals. Scale bar = 1 mm (upper sections) and 50 mm (lower sections). B. Myocyte cross-sectional area in WT-sham, Tg-sham, WT-TAC and
Tg-TAC. C. Representative photomicrographs of Masson’s trichrome-stained LV cross-sections obtained from 4 groups of animals. Scale bar = 50 mm.
D. Collagen volume fraction in WT-sham, TG-sham, WT-TAC, and TG-TAC. Values are mean 6 SEM. **; P,0.01 vs WT-sham. {{; P,0.01 vs WT-TAC.
doi:10.1371/journal.pone.0067642.g003

Figure 4. Effects of the upregulation of Twinkle on fibrosis signaling. A-C. mRNA expression of COL1a (A), COL3a (B), and CTGF (C),
quantified by real-time PCR relative to housekeeping gene (18S gene) in neonatal rat cardiac fibroblast. Cells were preinfected with AxCAhTwinkle
(Twinkle) or AxCALacZ (LacZ) for 72 hours. Values are mean 6 SEM. Data are presented as ratio to LacZ. **; P,0.01, *; P,0.05 vs LacZ.
doi:10.1371/journal.pone.0067642.g004
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(adaptive remodeling), but prevented the pathological fibrotic

change and progression of heart failure (maladaptive remodeling).

We propose a new potential therapeutic concept that increasing

Twinkle could be beneficial to prevent heart failure cause by

prolonged pressure overload.

Mitochondrial Characteristics
In the present study, mtDNA copy number tended to decrease

(P=0.07) in TAC compared to sham on day 28 after operation,

but the difference was not significant (Figure 1A). However, a

previous study showed that mtDNA copy number decreased in a

similar animal model of aortic banding [6]. This discrepancy may

be due to the difference in severity of pressure overload between

the two studies, judging from the hypertrophy data. Increasing the

pressure overload intensity in our model may result in a significant

decrease in mtDNA copy number in TAC. In the present study,

we used a 26-gauge needle to induce pressure overload, which

produced stable hypertrophy but rather mild effect on heart

failure. On the other hand, using a 27- or 28-gauge needle as in

previous study [13] resulted in higher surgical mortality but

produces greater pressure overload in our preliminary experi-

ments.

We found that increasing mtDNA copy by Twinkle overex-

pression did not affect mitochondrial enzyme activity, which is

consistent with a previous report [16]. Furthermore, TAC also did

not affect mitochondrial enzyme activity (Figure 1B and C). These

results suggest that mitochondrial electron transport complex

activity is not directly related to the cardioprotective effect of

Twinkle overexpression.

The mechanism by which increased Twinkle expression

prevents heart failure under pressure overload condition remains

unknown. In this study we showed that Twinkle overexpression

prevented cardiac fibrosis in vivo and in vitro (to be discussed in

detail below). We therefore speculate that Twinkle overexpression

somehow inhibits cardiac profibrogenic signals. We need to

conduct further investigation about the mechanism.

Cardiac Hypertrophy, Function, and Fibrosis
Twinkle overexpression ameliorated TAC-induced decreases in

LV fractional shortening and ejection fraction, as well as increase

in LV end-diastolic pressure (Table 1 and Figure 2). These

changes were significant although the magnitudes were small. As

mentioned earlier, the relatively mild pressure overload produced

in our model may partially explain the small amelioration of

cardiac dysfunction by Twinkle overexpression. Nevertheless, the

significant improvements in cardiac function indicate the benefit of

Twinkle overexpression in preventing heart failure. On the other

hand, hypertrophic changes (heart weight/body weight, LV

weight/body weight and wall thickness) and end-diastolic LV

dilatation were comparable between Tg-TAC and WT-TAC

(Table 1 and Figure 2). These findings suggest that Twinkle

overexpression does not inhibit adaptive remodeling (myocardial

hypertrophy) but attenuates maladaptive remodeling (progression

of systolic dysfunction) after sustained pressure overload.

Histopathologically Twinkle overexpression attenuated fibrotic

changes after TAC operation (Figure 3), and in vitro experiment

confirmed the inhibition of profibrogenic genes by Twinkle

overexpression (Figure 4 and 5). Cardiac fibrosis is a typical

morphological change in maladaptive cardiac remodeling in

hypertensive heart disease [24]. Both systolic and diastolic cardiac

functions correlate with the degree of cardiac fibrosis [25,26].

Taken together, we speculate the relatively preserved LV function

in Tg-TAC may be associated with the amelioration of cardiac

fibrosis.

A major limitation of the present study is that we cannot

elucidate the mechanism of how increased mtDNA reduces

fibrosis in the pressure overload model. We should conduct further

investigations to reveal the molecular mechanisms of how Twinkle

overexpression or increased mtDNA decreases fibrosis or fibrosis-

related signaling.

Clinical Implication
We speculate that increased mtDNA copy number by Twinkle

overexpression is responsible for the cardioprotective effects.

Previous studies have proposed various strategies such as

resveratrol intake [14], exercise training [27], and caloric

restriction [28] to increase mtDNA copy number systematically.

We have also reported that exogenously administered recombi-

nant mitochondrial transcription factor A protein increases

mtDNA copy number in cardiac myocytes [15]. Increasing

mtDNA copy number in clinical situation using these methods

would be beneficial for the prevention of heart failure caused by

pressure overload. Further investigations, especially in human

studies, are anticipated.

Conclusion
Overexpression of Twinkle helicase ameliorated the progression

of LV fibrosis in a mouse pressure overload model. Increasing

mtDNA copy number by Twinkle overexpression could be a novel

therapeutic strategy for hypertensive heart disease.

Supporting Information

Figure S1 The time course of LV fractional shortening
after TAC. The change of LV fractional shortening over time,

after TAC operation. Values are mean 6 SEM. *; P,0.05 vs day

0, {; P,0.05 vs WT-TAC (day 28). FS; fractional shortening.

(TIF)

Figure 5. Effects of the upregulation or donwregulation of
Twinkle on TGF-b1 mRNA expression. TGF-b1 expression in cardiac
fibroblasts stimulated with AngII (1 mM) for 24 hours, quantified by real-
time PCR relative to housekeeping gene (18S gene). Cells were
preinfected with AxCAhTwinkle (Twinkle), AxCAsi-rTwinkle (siTwinkle)
or AxCALacZ (LacZ). Values are mean 6 SEM. Data are presented as
ratio to LacZ-vehicle. **; P,0.01 vs LacZ-vehicle, {; P,0.05 vs LacZ-
AngII.
doi:10.1371/journal.pone.0067642.g005
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Figure S2 mRNA expressions after TAC operation. A–C.
mRNA expression of COL1a (A), COL3a (B), and CTGF (C), 28

days after TAC or sham operation. They were quantified by real-

time PCR relative to nuclear genome (HPRT gene). Values are

mean 6 SEM. Data are presented as ratio to WT-sham.

(TIF)

Figure S3 Twinkle mRNA expression in siTwnkle. Rat

Twinkle mRNA expression in cultured cardiac fibroblasts were

quantified by real-time PCR relative to housekeeping gene (18S

gene). Cells were preinfected with AxCAsi-rTwinkle (siTwinkle) or

AxCALacZ (LacZ). Values are mean 6 SEM. Data are presented

as ratio to LacZ. **; P,0.01 vs LacZ.

(TIF)
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