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ABSTRACT

Ribonucleotide reductase (RNR) is the rate-limiting
enzyme in deoxyribonucleoside triphosphate
(dNTP) biosynthesis, with important roles in
nuclear genome maintenance. RNR is also essential
for maintenance of mitochondrial DNA (mtDNA) in
mammals. The mechanisms regulating mtDNA
copy number in mammals are only being dis-
covered. In budding yeast, RNR overexpression
resulted in increased mtDNA levels, and rescued
the disease phenotypes caused by a mutant
mtDNA polymerase. This raised the question of
whether mtDNA copy number increase by RNR in-
duction could be a strategy for treating diseases
with mtDNA mutations. We show here that high-
level overexpression of RNR subunits (Rrm1, Rrm2
and p53R2; separately or in different combinations)
in mice does not result in mtDNA copy number ele-
vation. Instead, simultaneous expression of two
RNR subunits leads to imbalanced dNTP pools and
progressive mtDNA depletion in the skeletal muscle,
without mtDNA mutagenesis. We also show that en-
dogenous RNR transcripts are downregulated in
response to large increases of mtDNA in mice,
which is indicative of nuclear-mitochondrial cross-
talk with regard to mtDNA copy number. Our results
establish that RNR is not limiting for mtDNA copy
number in mice, and provide new evidence for the
importance of balanced dNTP pools in mtDNA main-
tenance in postmitotic tissues.

INTRODUCTION

Ribonucleotide reductase (RNR) catalyzes the rate-
limiting step in de novo synthesis of deoxyribonucleoside
triphosphates (dNTPs) [reviewed in (1)]. The enzyme is
known to contribute to malignant transformation (2,3).
During S-phase, RNR is abundant as a tetramer
composed of homodimers of the large Rrm1 and small
Rrm2 subunits. In non-cycling cells, Rrm2 is replaced by
the alternative small subunit p53R2 (4). The latter is
induced by the tumor suppressor p53 and was initially
considered to contribute to nuclear DNA damage re-
sponses (5,6).

Mutation of p53R2 has recently been found to be an
important cause of human inherited diseases. Inactivating
mutations of RRM2B, the gene encoding p53R2, were not
associated with neoplasms, but caused early onset fatal de-
pletion of mitochondrial DNA (mtDNA) (MIM #612075)
(7). Similarly, knock-out mice lacking p53R2 exhibited
near-total loss of mtDNA and died shortly after weaning
(7,8). We recently reported that a dominant RRM2B
mutation led to truncated p53R2 and caused adult-onset
progressive external ophthalmoplegia (PEO) with multiple
mtDNA deletions (9). Certain compound heterozygote
RRM2Bmutations have also been shown to result in mito-
chondrial neurogastrointestinal encephalopathy (MNGIE;
MIM #603041) (10). Defects in p53R2 can therefore cause
diseases of differing severity, ranging from fatal
multisystem disorders with mtDNA depletion in children,
to an adult-onset muscle disorder with multiple mtDNA
deletions. These results highlight the essential role of
RNR in mtDNA maintenance in postmitotic cells.

Increasing mtDNA copy number has emerged as an
attractive target of intervention for mtDNA diseases.
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Even a minimal amount of wild-type mtDNA can compen-
sate a functionally recessive mutant (11). In the budding
yeast Saccharomyces cerevisiae, RNR overexpression led
to elevation of mtDNA copy number (12) and to the
rescue of the ‘petite’ phenotype of mtDNA polymerase
mutants that carried mutations equivalent to those in auto-
somal dominant PEO (13). This suggested that RNR levels,
by affecting dNTP pools, might be rate limiting for
mtDNA synthesis, and that increasing the availability of
the enzyme might be a tool for increasing mtDNA abun-
dance. Whether RNR induction could increase mtDNA in
mammals, as it does in yeast, has so far not been
investigated.

In mice, considerable increase of mtDNA copy number
has only been achieved in two mouse models,
overexpressing the mitochondrial transcription factor A
(TFAM) or the mtDNA helicase Twinkle (14,15).
TFAM is required for mtDNA transcription, but it also
binds DNA with low specificity and packages mtDNA in a
histone-like manner (16–18). Its levels closely follow
mtDNA levels. Twinkle helicase is known to increase
mtDNA copy number by affecting the replication initi-
ation rate (19). In this study, we set out to determine
whether overexpression of RNR subunits, alone or in
combination with each other, influence mtDNA copy
number in mammalian tissues.

MATERIALS AND METHODS

Generation of transgenic mice

The Rrm1Tg, Rrm2Tg and p53R2Tg mice have been previ-
ously described (3). Briefly, the mice were maintained
on a pure FVB/N strain background and expressed their
transgene under the control of chicken b-actin promoter
and cytomegalovirus enhancer regulatory sequences.
The transgenic mice seemed grossly normal and were
fertile. The presence of the transgene was verified by
PCR analysis as described earlier (3). Rrm1Tg mice
showed restricted overexpression of Rrm1 protein primar-
ily in the skeletal muscle by immunoblotting whereas
Rrm2Tg and p53R2Tg mice had widespread, high-level
overexpression of the transgene in all tested tissues. For
this study, we created mice overexpressing Rrm1 together
with either Rrm2 or p53R2 by cross-breeding mice that
were hemizygous for each transgene. Because the PCR
assay used to detect Rrm1Tg and p53R2Tg is not
transgene-specific (3), the presence of Rrm1Tg or
p53R2Tg in offspring from these crosses was determined
by Southern blotting. Briefly, tail DNA obtained from
offspring was digested overnight with BamHI (Rrm1Tg)
or EcoRV (p53R2Tg). After DNA was immobilized on a
nylon membrane (GeneScreen Plus, Perkin Elmer), trans-
gene bands were detected by hybridization with
radio-labeled probes derived from previously described
pCaggs RNR expression constructs (3). Pathological
examination of lung neoplasms was performed as
before (3).

The TwinkleTg (15) and TFAMTg mice (20) used here
were also described earlier. Both were in C57BL/6 back-
ground, and expressed the transgene under a ubiquitous

b-actin promoter. The Twinkle-mice were backcrossed to
C57BL/6 from FVB/N for more than 12 generations, and
the congeneity was confirmed with the Mouse Medium
Density SNP Panel (Illumina).

Quantification of RNR transgene overexpression

Western blotting for RNR subunits was performed as
described earlier (3). Chemiluminescent signal was
detected on a VersaDoc Imaging system and quantified
using Quantity One software (Bio-Rad Laboratories).
Band intensity was determined for each dilution series
sample and plotted following subtraction of background
signal. The measured intensity for each undiluted
wild-type band was fitted to the generated line for the
corresponding RNRTg dilution series. Fold
overexpression values were corrected for loading by stand-
ardization based on a-tubulin signal.

Southern blotting for mtDNA copy number determination

Total DNA was isolated from tissues by proteinase K di-
gestion and standard phenol–chloroform extraction.
Southern blotting was performed essentially as previously
described (21). Briefly, 3 mg total DNA was digested with
SacI overnight at 37�C, samples were then separated by
electrophoresis in an agarose gel and blotted by alkaline
transfer onto a Hybond N+ membrane (Amersham
Biosciences). The membrane was hybridized overnight at
68�C in a roller hybridizer using 5 mCi/ml 32P-dCTP
labeled (PCR-generated) mouse mtDNA probe, and 18S
rDNA probe in pBR322 plasmid. Phosphoimager analysis
was done with Typhoon 9400 (Amersham Biosciences)
and mtDNA was quantified against the 18S rDNA
signal using ImageQuant v5.0 software (Amersham
Biosciences).

Real-time PCR

For mtDNA quantification, the quantitative real-time
(q)PCR reactions were done with 25 ng total DNA used
as template and normalizing the mt-Cytb gene amplifica-
tion level (primer sequences: 50-GCTTTCCACTTCATCT
TACCATTTA-30 and 50-TGTTGGGTTGTTTGATCC
TG-30) against the nuclear b-actin gene (primer sequences:
50-GGAAAAGAGCCTCAGGGCAT-30 and 50-GAAGA
GCTATGAGCTGCCTGA-30). Samples were run on an
Abi Prism SDS 7000 machine (Applied Biosystem).
Amplification conditions were: 95�C for 7min followed
by 35 cycles of 95�C for 10 s and 60�C for 30 s.
Dissociation curves were checked to ensure the existence
of a single PCR product. Each sample was run in dupli-
cate, and samples with significant variation between du-
plicates were excluded. qPCR data were analyzed using
7000 System Sequence Detection Software version 1.2.3
(Applied Biosystems).
For gene expression analysis, 1000 ng total RNA was

DNase digested using the Amplification Grade DNase I
kit (Invitrogen) according to the manufacturer’s instruc-
tions. Reverse transcription was done using M-MLV
reverse transcriptase (Promega). Taqman gene expression
assay for Rrm2b (assay ID Mm01165706_m1) and the
Gapdh endogenous control were purchased from Applied
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Biosystems. The PCR reactions for Rrm2b and Gapdh
were done using TaqMan Universal PCR Master Mix
(Applied Biosystems), and run on an Abi Prism SDS
7000 machine (Applied Biosystem) according to the manu-
facturer’s protocol. The PCR for Rrm1 was done using
the DyNAmoTM Flash SYBR� Green QPCR Kit
(Finnzymes) as above (primer sequences 50-TGGACTCA
ACATGGACTTTG-30 and 50-GGCCTTGGATTACTTT
CATG-30). QPCR data were analyzed using 7000 System
Sequence Detection Software version 1.2.3 (Applied
Biosystems). The amplification level of Rrm2b or Rrm1
was normalized by dividing by the Gapdh amplification
level.

MtDNA point mutation analysis

For mtDNA point mutation analysis we used primers
that specifically amplified the mt-Cytb gene (nucleotide
pair 14 073–14 906) and non-coding control region
(15357–138) of mouse mtDNA. In the PCR, we utilized
the high-fidelity Phusion polymerase (Finnzymes) accord-
ing to the manufacturer’s instructions, with 25 ng total
DNA from quadriceps femoris muscle as template. The
PCR program was 98�C for 30 s followed by 30 cycles of
98�C for 10 s, 61�C for 10 s and 72�C for 30 s. PCR
products were cloned into pCR�2.1 plasmid using the
TA cloning kit (Invitrogen) according to the manufactur-
er’s instructions. Multiple PCR clones were sequenced to
generate �30 000 bp of sequence for each region.

Long PCR

Long PCR to amplify the entire mitochondrial genome
or selectively deleted mtDNA molecules was done using
the Expand Long Template PCR System (Roche). Fifty-
nanogram total DNA was used as template. Cycling
conditions were: 92�C for 2min followed by 30 cycles of
92�C for 10 s and 68�C for 12min. PCR products were
separated by electrophoresis on 1% agarose gels and
visualized with a Typhoon 9400 scanner (Amersham
Biosciences). Primers hybridized to the control region of
mtDNA located at nucleotide positions 1953–1924 and
2473–2505.

Measurement of nucleotide pools in skeletal muscle

Nucleotides were extracted from skeletal muscle of aged
mice using previously described methods with modifica-
tions (22,23). Briefly, skeletal muscle was excised following
euthanasia by CO2 asphyxiation and snap-frozen in liquid
nitrogen. When sufficient tissue was available, samples
were divided into two equal portions, processed separ-
ately, and compared to assess measurement consistency.
Tissues were weighed and immersed in �5 ml/mg 10% tri-
chloroacetic acid, 10mM MgCl2. Tissues were
homogenized in a Qiagen Tissue Lyser by six cycles of
30 s at 30Hz followed by 30 s on ice. Tissue homogenates
were incubated on ice for 20min, then spun at 13 000 g
for 1min. The supernatant was taken to a fresh tube
and re-spun. An approximately equal volume of 0.5N
trioctylamine in fluorotrichloromethane was added to
the supernatant. The samples were vortexed briefly and
spun for 2min at 16 000 g. The volume of the upper

phase was estimated by pipetting and aliquots were
snap-frozen in liquid nitrogen and stored at �80�C until
nucleotide measurements were performed. dNTPs were
measured using an indirect enzymatic assay as reported
by Ferraro et al. (24). Standard curves were prepared
from concentrated stocks of pure individual dNTPs
(Fermentas). Reactions in 50 ml total volume were
incubated for 1 h and then 30 ml was spotted to
Whatman DE81 paper discs and dried. Discs were
washed three times in 5% Na2HPO4, and once each
in dH2O and 95% EtOH. Discs were dried and counted
on a Beckman Coulter LS6500 scintillation counter.
Measurement of ribonucleosides was performed as in
Kochanowski et al. (25) with modifications. Analyses
were carried out on a Shimadzu UHPLC system.
Samples were separated on a Supelco LC-18T column in
30mM KH2PO4 and 10mM tetrabutylammonium
hydrogen sulfate, pH 6.5: methanol (A=91.7:8.3,
B=71.6:28.4) over a 40-min time period. The program
ran 0–100%B from 0–24min, 1min at 100% B and
100–0% B from 25–30min at a flow rate of 1ml/min.
Identities of analytes were confirmed both by comparison
of elution time to known standards and by wavelength of
maximum absorbance (lmax). Sample extracts in which
ATP comprised <65% of the total adenine nucleotides
were excluded from further analysis.

RESULTS

Generation of RNR transgenic mice

Transgenic mice that express recombinant Rrm1, Rrm2 or
p53R2 (referred to as ‘Rrm1Tg’, ‘Rrm2Tg’ and ‘p53R2Tg’
mice hereafter) were generated previously and showed
broad, high-level RNR overexpression (3). Since active
RNR requires the presence of the large and the small
subunit, simultaneous overexpression of both subunits
could cause a greater increase in RNR activity. We there-
fore interbred Rrm1Tg mice with Rrm2Tg or p53R2Tg mice
to generate bitransgenic mice. The Rrm1Tg+Rrm2Tg and
Rrm1Tg+p53R2Tg mice were born at expected frequencies
and showed no gross abnormalities (Supplementary
Table S1). The endogenous RNR subunits were barely
or not at all detectable by western blotting of 25 mg
protein for each muscle tissue extract, whereas significant
overexpression was observed in RNRTg samples. We
therefore made serial dilutions from each RNRTg

sample, and plotted the band intensities against the
dilution level. Fitting the corresponding wild-type
samples onto this plot allowed us to estimate the fold
overexpression for each transgene-encoded protein
(Figure 1). The calculated threshold dilutions for
bitransgenic mice are shown in Table 1. The level of trans-
gene overexpression was comparable between single
RNR transgenic and bitransgenic mice (Supplementary
Figure S1).

Rrm2Tg and p53R2Tg mice were previously found to
have increased lung tumor prevalence at �17 months of
age (3), Rrm2 being a more potent tumor inducer than
p53R2. In bitransgenic mice, the lung tumor formation
occurred with similar frequency as in mice overexpressing
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either of the small RNR subunits alone (Supplementary
Table S2). The bitransgenic mice were followed up to
�17-month age and, excluding lung tumor formation,
they appeared grossly normal during this time.

RNR overexpression does not elevate mtDNA copy
number in mouse tissues

We used Southern blotting to investigate the effect of
RNR expression on mtDNA copy number in the
skeletal muscle (Figure 2A), heart (Figure 2B), liver and
kidney (Supplementary Figure S2) of the various RNRTg

mice. No significant increases in mtDNA copy number
were observed in any of the tissues from 9–12-weeks-old
mice. In the skeletal muscle of the bitransgenic mice, there
was actually a modest reduction in mtDNA abundance:
Rrm1Tg+Rrm2Tg mice had on average 71% (P=0.026)
and Rrm1Tg+p53R2Tg mice 62% (P=0.0075) residual
mtDNA amounts compared to their wild-type littermates
(Figure 2A). The mtDNA depletion in skeletal muscle
was progressive; at 11–15 months of age, the residual
mtDNA copy number was 42% in Rrm1Tg+Rrm2Tg

mice (P=0.030) and 34% in Rrm1Tg+p53R2Tg mice
(P=0.0011) (Figure 2A). The mtDNA levels in the

other examined tissues remained unchanged also at the
older age. Therefore, overexpression of RNR did not
elevate mtDNA copy number in differentiated mouse
tissues and was associated with progressive mtDNA de-
pletion in bitransgenic animals.

RNR overexpression does not affect mtDNA integrity
or mutagenesis

Overexpression of RNR causes nuclear genome mutagen-
esis and promotes cancer (3). We therefore asked whether
RNR overexpression leads to mtDNA instability as well.
We examined the presence of mtDNA point mutations in
the skeletal muscle of a 16-month-old Rrm1Tg+Rrm2Tg

mouse by amplifying and cloning mtDNA regions from
the control region (1080 bp) and mt-Cytb gene (833 bp),
which encodes cytochrome b, followed by sequencing of
�30 kb of DNA from each region. We previously reported
the point mutation rate in wild-type FVB/N mice to be
�0.5 mutations per 10 kb in the control region and
�0.25 mutations per 10 kb in the mt-Cytb gene (15). The
16-month-old Rrm1Tg+Rrm2Tg showed similar or lower
point mutation loads compared to a wild-type control
(Table 2). In a long-range PCR assay, full-length

Figure 1. RNR overexpression in skeletal muscle and cardiac muscle from Rrm1Tg+Rrm2Tg and Rrm1Tg+p53R2Tg bitransgenic mice. Western-blot
analysis of RNR protein expression was performed on total protein extracts prepared from skeletal muscle (A and C) or cardiac muscle (B and D)
from wild-type (WT) as well as Rrm1Tg+Rrm2Tg or Rrm1Tg+p53R2Tg bitransgenic mice. Extracts were left undiluted (1�) or diluted as indicated
and then subjected to immunoblotting with antibodies specific to Rrm1, Rrm2 or p53R2. The asterisk indicates a non-specific band in the anti-Rrm2
immunoblot. a-Tubulin signal in undiluted skeletal (C) and cardiac (D) muscle samples was used to normalize for protein loading. The analysis was
performed on three mice of each genotype, and representative bands are shown for clarity of comparison. The calculated fold overexpression values
are shown in Table 1.
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mtDNA was readily amplified in the skeletal muscle of
aged bitransgenic mice, with no additional small amplify-
ing products. This ruled out the presence of large mtDNA
deletions (Figure 3). These analyses showed that
bitransgenic RNR overexpression did not increase

deletion formation or point mutagenesis of mtDNA, but
only caused mtDNA depletion.

RNR overexpression leads to dNTP pool imbalance in
skeletal muscle

In many human diseases and mouse models, mtDNA de-
pletion and instability have been suggested to occur as the
result of perturbed dNTP pools (26–28). To understand
the mechanism of mtDNA depletion in RNR
overexpressors, we measured the relative levels of dNTP
pools in muscle extracts. Nucleotides are known to easily
undergo quick dephosphorylation during the extraction
procedure (29–31). Under conditions when dNTPs are
dephosphorylated during sample preparation, ATP is
similarly degraded to ADP and AMP. Therefore, the
level of ATP in the extract closely mirrors that of the
dNTPs, and can be used as an internal marker of
unwanted dNTP destruction (30). We measured dNTP
levels in skeletal muscle extracts from 12-month-old mice
by a primer extension assay, using 2–3 mice of each

Figure 2. mtDNA quantification in young (9–12 weeks) and aged (11–15 months) mice. Southern blots of digested total DNA from skeletal (A) and
cardiac and (B) muscle were probed for full-length mtDNA and the nuclear 18S rDNA gene to control for loading. (A) mtDNA to nuclear DNA
ratios were determined by densitometric quantification of Southern blots and by QPCR, both methods yielding similar results. mtDNA depletion was
found in young and aged bitransgenic mice. (B) No change in mtDNA copy number was observed in the cardiac muscle of RNRTg mice. Error bars
indicate SEM. *P< 0.05, **P< 0.01, Student’s t-test compared to wild-type where N � 3 individual animals.

Table 1. Transgene–encoded protein levels

Genotype Protein Skeletal muscle Cardiac muscle

Rrm1Tg+Rrm2Tg Rrm1 3.3 (±2.1) 33.7 (±7.6)
Rrm2 37.0 (±7.2) >23.7 (±3.8)

Rrm1Tg+p53R2Tg Rrm1 11.7 (±6.7) 34.7 (±24.5)
p53R2 355.3 (±25) 975.3 (±726.3)

The relative levels of transgene encoded proteins were determined by
western blotting serial dilutions of skeletal and cardiac muscle tissue
lysates, as shown in Figure 1. The table shows the average (±standard
deviation) calculated threshold dilutions from three mice of each
genotype, for each of the proteins in Rrm1Tg+Rrm2Tg and
Rrm1Tg+p53R2Tg bitransgenic mice.
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genotype. The levels of ATP, ADP and AMP were
measured from the same extracts by HPLC.

The average ATP levels were similar across the geno-
types, the levels of ADP were >10-fold lower than that of
ATP, and AMP amounted to <1% of the total adenine

nucleotide pools (Figure 4). These ATP/ADP ratios
corresponded well with previously reported numbers
from mouse liver (30), and suggested that general dNTP
dephosphorylation did not have a major effect on
the dNTP level determination. The only exceptions were
the Rrm1Tg+Rrm2Tg mice, which did exhibit a somewhat
lower average ATP/ADP ratio than the other genotypes
(Figure 4), suggesting that dNTP measurements may
have been underestimated in those mice. To ensure that
the high level of RNR overexpression did not lead to
substrate depletion, we also measured the levels of CDP,
UDP and GDP, and found no significant differences
in their levels between the genotypes (Supplementary
Figure S3).
The amounts of the individual dNTPs are shown in

Figure 5. Data are presented according to the respective
crosses, with the Rrm1Tg X p53R2Tg crosses in panels
A–D and the Rrm1Tg X Rrm2Tg crosses in panels E–H.
We observed increases in the levels of dATP and dCTP in
all of the transgenic lines, as compared to wild-type
control samples. The mice expressing either small
subunit showed greater relative increases in dATP and

Figure 3. Analysis of mtDNA integrity in RNRTg mice by mtDNA
deletion assay. To look for mtDNA deletions, a long-PCR assay was
used to amplify the entire mtDNA genome from the skeletal muscle of
12-month old wild-type, Rrm1Tg+Rrm2Tg and Rrm1Tg+p53R2Tg

mice. The full-length mtDNA (16 kb) was readily amplified from all
samples. A Deletor mouse sample was included as a positive control;
this sample shows multiple mtDNA fragments of smaller size. The
DNA ladder � Hind was used as a size marker.

Figure 4. Measurement of AMP, ADP, and ATP levels in skeletal
muscle extracts from RNRTg mice. The pools of ATP, ADP and
AMP were measured from skeletal muscle extracts by an HPLC
assay and quantified relative to standard curves. Results are presented
as the means of results from two (for wild-type) or three (for all other
genotypes) mice. The average levels of the adenine nucleotides were
plotted on linear (A) and logarithmic (B) scales, and found to be
similar across genotypes, which suggested comparable extraction
efficiencies. The only exception was with the Rrm1Tg+Rrm2Tg mice,
which had lower average ATP levels and ATP/ADP ratios compared to
the other genotypes. This may cause dNTP pool levels in these mice to
be underestimated. Error bars indicate SEM.

Table 2. Effect of RNR overexpression upon mtDNA point

mutagenesis

Mouse (genotype) mt-Cytb gene Control region

Sequenced
(base pairs)

Mutation
rate
(per 10 kb)

Sequenced
(base pairs)

Mutation
rate
(per 10 kb)

Wild-type 30 844 0.648 27 332 0.366
Rrm1Tg+Rrm2Tg 39 438 0.000 28 034 0.356

Fragments from the control region (1080 bp) and mt-Cytb gene (833 bp)
of mtDNA, were amplified by PCR, cloned and multiple clones were
sequenced. Data are from the skeletal muscle of a 16-month-old
Rrm1Tg+Rrm2Tg mouse and a 14.5-month old wild-type mouse. The
mtDNA point mutation load was not increased in the bitransgenic
mouse.
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dCTP than the Rrm1Tg mice. There was also a clear
tendency towards higher dATP and dCTP values in the
bitransgenic Rrm1Tg+p53R2Tg and Rrm1Tg+Rrm2Tg

mice as compared to the p53R2Tg (Figure 5A and D)
and Rrm2Tg (Figure 5E and H) single transgenic mice,
respectively. In contrast to the elevated levels of dATP
and dCTP, the levels of dGTP were unchanged in all of
the transgenic mice (Figure 5B and F), and the levels of
dTTP were actually decreased significantly in the p53R2Tg

and Rrm1Tg+p53R2Tg mice (Figure 5C), and, to a lesser
degree, in the Rrm1Tg, Rrm2Tg and Rrm1Tg+Rrm2Tg

mice (Figure 5G). Taken together, these data suggested
that RNR overexpression led to significant changes in
dNTP pools and considerable imbalances between the dif-
ferent dNTPs, with the most pronounced changes in
bitransgenic RNRTg mice.

Increased mtDNA copy number is associated with
decreased RNR expression

RNR is involved in a signalling pathway that regulates
mtDNA copy number in yeast (12), and regulation of
RNR expression could be part of a homeostatic mechan-
ism to control mtDNA copy number in mammals. We

therefore utilized mouse models that express recombinant
wild-type mouse Twinkle (15) or human TFAM (20), with
�2- and �3-fold respective increases of mtDNA copy
numbers in their skeletal muscle at the age of ten weeks.
We measured the expression levels of Rrm1 and Rrm2b,
the genes encoding Rrm1 and p53R2, respectively, in
skeletal muscle of TwinkleTg and TFAMTg mice. Rrm1
mRNA was decreased to 76% (P=0.011) and 70%
(P=0.010) in the TwinkleTg and TFAMTg mice, respect-
ively (Figure 6A). Rrm2b mRNA was similarly decreased
to 78% (P=0.045) and 77% (P=0.0093) of normal
in the TwinkleTg and TFAMTg mice, respectively
(Figure 6B). Thus the expression of RNR genes was
found to correlate inversely with mtDNA copy number
in two mouse models.

DISCUSSION

RNR is essential for both nuclear and mtDNA replica-
tion. The enzyme is limiting for mtDNA copy number in
yeast, but whether the same is true in mammals has not
been studied earlier.

Figure 5. RNR overexpression alters dNTP pools in skeletal muscle. The levels of the four dNTPs were measured by polymerase assay and
expressed per unit weight of skeletal muscle. Pool sizes for the indicated dNTPs were compared between wild-type control mice and mice from
Rrm1Tg�p53R2Tg (A–D) or Rrm1Tg�Rrm2Tg (E–H) breedings. Results are presented as the means of results from two (for wild-type) or three (for
all other genotypes) mice. Results for the same wild-type and Rrm1Tg mice are presented in (A–D) and (E–H) for comparative purposes. The levels
of dATP (A and E) were significantly increased in p53R2Tg and Rrm1Tg+p53R2Tg mice as well as in Rrm2Tg and Rrm1Tg+Rrm2Tg mice. The dGTP
levels (B and F) were unchanged in all mice. dTTP (C and G) was decreased in p53R2Tg and Rrm1Tg+p53R2Tg mice and to a lesser degree also in
Rrm1Tg, Rrm2Tg, and Rrm1Tg+Rrm2Tg mice. dCTP (D and H) showed a similar pattern as dATP, with increases in p53R2Tg and Rrm1Tg+p53R2Tg

mice as well as in Rrm2Tg and Rrm1Tg+Rrm2Tg mice. In each case, the Rrm1Tg mice showed similar but less pronounced dNTP changes as the mice
overexpressing the small subunits. Error bars indicate SEM, *P< 0.05, Student’s t-test as compared to wild-type.
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dNTP pool regulation has emerged as a potential tool
to increase mtDNA levels, and thereby to slow down pro-
gression of mtDNA disease. In vitro supplementation with
two deoxyribonucleoside monophosphates (dNMPs)
rescued mtDNA depletion in cultured patient myotubes
with mutations in the mitochondrial deoxyribonucleoside
salvage pathway enzyme deoxyguanosine kinase (dGK)
(32). However, mtDNA depletion due to patient muta-
tions in the mtDNA polymerase gamma (Pol g) was not
restored through nucleotide supplementation in the same
study. Likewise, nucleotide supplementation to healthy
myotubes did not increase mtDNA levels significantly
above normal (32). These results suggested that although
dNTP pool expansion may be beneficial in cases of dNTP
deficiency, other factors than the size of the mitochondrial
dNTP pool are limiting for mtDNA copy number in
normal cells or in mtDNA replication defects.

RNR overexpression in yeast resulted in elevated
mtDNA levels (12), and complementation of the respira-
tory chain deficient phenotype of Pol g disease mutations
(13). The results presented here suggest that RNR
overexpression has partially opposite effects in mammals,
which illustrates the marked differences in dNTP pool
maintenance between organisms. However, we cannot
exclude the possibility that increased RNR activity or
dNTP availability in vivo could be beneficial in cases with
increased mtDNA turnover or mutagenesis. The increased
carcinogenesis in RNRTg mice (3) illustrates the hazards of
altering dNTP pool maintenance and further reduces the
potential of RNR as a therapeutic tool.
The mechanisms governing mtDNA copy number in

tissues are starting to come into focus. In mice,
overexpression of the histone-like packaging protein
TFAM or of the mtDNA helicase Twinkle increase
mtDNA copy number 2- to 3-fold (14,15). The mRNA
level of Twinkle and the protein level of TFAM correlate
linearly with mtDNA content, suggesting that these may
be limiting factors in determining the amount of mtDNA.
Defects in mitochondrial dNTP pool maintenance
proteins cause loss of mtDNA, indicating that these
factors are essential for mtDNA maintenance (7,33–36).
However, their contribution to the physiological control
of mtDNA copy number is not well characterized.
Heart-specific overexpression of the salvage pathway
enzyme thymidine kinase 2 (TK2) in mice resulted in a
300-fold increase in enzyme activity and produced a
�30% increase in mtDNA copy number (37). Therefore,
a very large increase in TK2 activity modestly influences
mtDNA levels, potentially through increases in
deoxycytidine and thymidine nucleotide pools. Our
results show that although RNR is involved in the synthe-
sis of all four dNTPs, very high levels of the enzyme do
not increase mtDNA copy number and instead perturb
mtDNA homeostasis. This finding is in line with
Twinkle and TFAM being the main regulators of
mtDNA level under normal circumstances.
A possible mechanism for nuclear control over mtDNA

copy number would be to alter the transcription of
mtDNA maintenance genes. In yeast, the first established
signaling pathway that regulated mtDNA copy number is
activated by the Mec1p/Rad53p kinases and leads to in-
duction of RNR expression (12). The related ATM
(ataxia-telangiectasia mutated) kinase in humans was
also found to influence RNR expression and mtDNA
homeostasis (38). We found the transcription of Rrm1
and Rrm2b to be downregulated in two independent
mouse models with increased mtDNA copy number, sug-
gesting an intimate feedback mechanism between tran-
scriptional regulation of RNR subunits and mtDNA
levels. RNR could thus contribute to a regulatory mech-
anism for nuclear control of mtDNA copy number in vivo.
Such a signaling pathway could involve p53, a tumor sup-
pressor and ATM target, which influences the expression
level of p53R2 and is known to localize in small amounts
to mitochondria (39).
RNR is rate-limiting for de novo dNTP synthesis, so any

alteration to RNR activity is expected to induce changes
in dNTP pools. These changes are transmitted into

Figure 6. RNR expression levels in mice with high mtDNA copy
number. A QPCR assay was used to measure the expression levels of
Rrm1 and Rrm2b, the genes encoding Rrm1 and p53R2, respectively, in
the skeletal muscle of mice overexpressing Twinkle or TFAM. These
mice have increased mtDNA copy number. (A) Rrm1 expression was
downregulated in the Twinkle-mice and TFAM-mice compared to
controls. (B) Rrm2b was similarly downregulated. Error bars indicate
SEM, *P< 0.05, **P< 0.01, Student’s t-test compared to wild-type
where N� 3 individual animals.
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mitochondria, since the mitochondrial and cytosolic
dNTP pools are in rapid communication (40). Direct
measurement of dNTP pools from animal tissues is
complicated by dNTP dephosphorylation caused by the
anaerobiosis that immediately follows the death of the
animal (30). Our extraction method was optimized to
minimize nucleotide degradation during extraction, and
the ATP, ADP and AMP levels were used as internal
controls to ensure comparability across samples. We
documented clear and reproducible differences in total
dNTP pools between RNR overexpressors and wild-type
mice.
First, there were significant increases in the levels of

dATP and dCTP both in the Rrm2Tg and p53R2Tg mice.
Rrm2 induced higher dNTP increases than p53R2, which
is consistent with Rrm2 being more active than p53R2
in vitro (41). Rrm1 overexpression alone was able to
induce a detectable, albeit not statistically significant,
increase in dATP and dCTP levels, and overexpression
of Rrm1 together with either small subunit led to a clear
trend towards higher levels of dATP and dCTP. This
apparent synergy suggested that co-overexpression of
both subunits led to an increase in the abundance of the
tetramer, with subsequent effects on nucleotide pools.
The allosteric regulation of RNR promotes a balanced

production of all four dNTPs and therefore manipulation
of RNR expression might be expected to influence the
levels of all four dNTPs equally (1). However, we found
remarkable dNTP pool imbalances in the RNRTg mice.
The dGTP pools were unchanged whereas dTTP pools
were actually decreased in p53R2Tg as well as
Rrm1Tg+p53R2Tg mice. This finding illustrates the need
for tight control of the relative activities of the large
number of anabolic and catabolic enzymes that determine
the final dNTP composition in vivo (42). For instance, the
synthesis of thymidine phosphates requires—as an add-
itional step—reductive methylation of RNR-generated
deoxyuridine monophosphate, which is catalyzed by
thymidylate synthase. Hence, induction of RNR could
cause a substrate overload for the endogenous
thymidylate synthase, which in turn could explain why
increased RNR does not increase the dTTP level.
Furthermore, the specificity of RNR for GDP reduction
is induced by the binding of dTTP to the specificity site of
Rrm1 (1). Thus, a relative lack of dTTP could explain why
the dGTP pools did not increase in our mice. The dNTP
imbalance was not due to depletion of any of the sub-
strates of RNR, since the levels of ADP, CDP, UDP
and GDP were similar in all genotypes.
Unbalanced dNTP pools are known to cause mutagen-

esis in both nuclear (43) and mitochondrial (28) genomes.
Given the presence of altered dNTP pools in RNRTg mice,
the likely mechanism of progressive mtDNA depletion in
bitransgenic mice is inefficient mtDNA replication caused
by perturbed dNTP balance. Initiation of nuclear DNA
replication is influenced by the dNTP pool (44,45), and an
imbalanced pool could lead to reduced frequency of
mtDNA replication initiation. mtDNA depletion was spe-
cifically restricted to bitransgenic mice, which was consist-
ent with them displaying the largest dNTP alterations.
The fact that Rrm2Tg and p53R2Tg mice also had

altered dNTP pools but no mtDNA depletion, suggests
a threshold effect for the relative dNTP levels above
which mtDNA replication becomes inefficient.
Nevertheless, we cannot exclude that co-overexpression
of Rrm1 and the small subunit gave rise to additional,
unidentified effects, which did not occur upon
overexpression of one subunit. Moreover, mtDNA deple-
tion was observed only in the skeletal muscle, although the
transgenes were overexpressed in both the skeletal and
cardiac muscles, suggesting tissue specific mechanisms in
the regulation of nucleotide pools and/or mtDNA
maintenance.

Altered dNTP pool balance is a hallmark of MNGIE
disease, where deficiency of the catabolic enzyme thymi-
dine phosphorylase (TP) leads to elevated dTTP pools,
which cause mtDNA depletion, deletions and point muta-
tions in humans (28). Contrary to MNGIE, however, we
found no increase in mtDNA point mutations or deletions
in the RNRTg mice. There are at least two possible explan-
ations for the absence of mtDNA instability, other than
depletion, in our mice. First, the dNTP changes were
almost opposite to those in MNGIE, i.e. the relative
dTTP level decreased instead of increasing. Further
studies are needed to elucidate the exact effect of
changes in the relative levels of each of the four dNTPs
on mtDNA replication frequency and fidelity. Second, the
life-span of a mouse may be too short to develop signifi-
cant amounts of mtDNA deletions or point mutations in
the setting of dNTP imbalance. In support of this, the
MNGIE mouse model lacking TP and the related
uridine phosphorylase (UP) displayed increased dTTP in
brain, and, similar to RNRTg mice, developed progressive
mtDNA depletion, but no deletions or point mutations
(27). The authors argued that this was at least partly
due to the short life-span of mice, emphasizing the differ-
ences in dNTP maintenance and disorders between
species.

In conclusion, we have established that expression of
recombinant RNR in mice leads to dNTP pool imbalance
and progressive depletion of mtDNA. This is in contrast
to previous findings in yeast, in which RNR is a positive
regulator of mtDNA abundance. Furthermore, endogen-
ous RNR expression is responsive to increased mtDNA
copy number and a potential modifier of mtDNA homeo-
stasis. The dNTP pool imbalance and mtDNA decrease
caused by excess RNR suggests that balanced amounts of
RNR are essential for mtDNA maintenance in vivo, and
that RNR is unlikely to be an optimal target for thera-
peutic engineering of mtDNA levels in mammals.
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