154 research outputs found
Core–shell catalyst pellets for effective reaction heat management
Catalyst research is concerned with synthesizing increasingly active materials, leading to safety issues at reactor scale, unless the reaction heat release is controllable. Computational studies predict that core–shell pellets with catalytically active core and inert shell are beneficial for this purpose, compared to established concepts such as catalyst pellet dilution. At high temperatures, reactant diffusion through the shell becomes rate-determining, resulting in a well-controllable heat release rate, which prevents further temperature increase. Here, industrial catalyst pellets were coated in a fluidized-bed pilot plant, demonstrating large-scale production feasibility. The obtained pellets were characterized via Dynamic Image Analysis, Scanning Electron Microscopy and X-ray Computed Tomography. Conducted CO2 methanation experiments confirm the predicted trends, if the applied shell is fully closed. Furthermore, mathematical and experimental studies demonstrate, that the inert shell shifts selectivity. Based on this work, safer and yet economical reactor operation is anticipated also for other reaction systems
Synthesis of Improved Catalytic Materials for High-Temperature Water-gas Shift Reaction
In this investigation, we report the preparation and characterization of Co-, Cu- and Mn-substituted iron oxide catalytic materials supported on activated carbon. Co-precipitation method and low temperature treatment were used for their synthesis. The influence of chemical composition, stoichiometry, particle size and dispersity on their catalytic activity was studied. Samples were characterized in all stages of their co-precipitation, heating and spend samples after catalytic tests. The obtained results from room and low temperature Mössbauer spectroscopy were combined with analysis of powder X-ray diffraction patterns (XRD). They revealed the preparation of nano-sized iron oxide materials supported on activated carbon. Relaxation phenomena were registered also for the supported phases. The catalytic performance in the water-gas shift reaction was studied. The activity order was as follows: Cu0.5Fe2.5O4 > Co0.5Fe2.5O4 > Mn0.5Fe2.5O4. Catalytic tests demonstrated very promising results and potential application of studied samples due to their cost-effective composition
Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions
Herein, a series of highly efficient gold based catalysts supported on mesoporous CeO2-Fe2O3 mixed oxides for CO elimination reactions have been developed. The materials have been fully characterized by means of XRD, Raman and UV-Vis spectroscopies among other techniques. We identify the Ce-Fe synergism as a fundamental factor controlling the catalytic performance. Our data clearly reveal that the CO oxidation activity is maximized when the electronic and structural properties of the support are carefully controlled. In this situation, fairly good catalysts for environmental applications as for example H2 streams purification for fuel cell goals or CO abatement at room temperature can be designedJunta de Andalucía TEP-8196España Mineco ENE2012-374301-C03-01 ENE2013-47880-C3-2-
Investigation of 3D particle flow in a flighted rotating drum
[EN] o validate the particle motion in flighted rotating drum (FRD), a laboratory FRD was built and operated at 15% filling degree and 10 rpm rotation speed using plastic balls as bed material. The particle tracking velocimetry (PTV) and magnetic particle tracking (MPT) techniques were applied to investigate the particle flow behavior. The 3D particle flow was modeled by Discrete Element Method (DEM) with LIGGGHTS. The height of the barycenter of all overall particles and particle instantaneous velocity were calculated from PTV and DEM data. The 3D time-averaged particle velocity distributions obtained from MPT experiment and DEM simulation were compared.Zhang, L.; Weigler, F.; Jiang, Z.; Idakiev, V.; Mörl, L.; Mellmann, J.; Tsotsas, E. (2018). Investigation of 3D particle flow in a flighted rotating drum. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 253-260. https://doi.org/10.4995/IDS2018.2018.7389OCS25326
Improved water–gas shift performance of Au/NiAl LDHs nanostructured catalysts via CeO2 addition
Supported gold on co-precipitated nanosized NiAl layered double hydroxides (LDHs) was studied as an effective catalyst for medium-temperature water–gas shift (WGS) reaction, an industrial catalytic process traditionally applied for the reduction in the amount of CO in the synthesis gas and production of pure hydrogen. The motivation of the present study was to improve the performance of the Au/NiAl catalyst via modification by CeO2. An innovative approach for the direct deposition of ceria (1, 3 or 5 wt.%) on NiAl-LDH, based on the precipitation of Ce3+ ions with 1M NaOH, was developed. The proposed method allows us to obtain the CeO2 phase and to preserve the NiAl layered structure by avoiding the calcination treatment. The synthesis of Au-containing samples was performed through the deposition–precipitation method. The as-prepared and WGS-tested samples were characterized by X-ray powder diffraction, N2-physisorption and X-ray photoelectron spectroscopy in order to clarify the effects of Au and CeO2 loading on the structure, phase composition, textural and electronic properties and activity of the catalysts. The reduction behavior of the studied samples was evaluated by temperature-programmed reduction. The WGS performance of Au/NiAl catalysts was significantly affected by the addition of CeO2. A favorable role of ceria was revealed by comparison of CO conversion degree at 220◦C reached by 3 wt.% CeO2-modified and ceria-free Au/NiAl samples (98.8 and 83.4%, respectively). It can be stated that tuning the properties of Au/NiAl LDH via CeO2 addition offers catalysts with possibilities for practical application owing to innovative synthesis and improved WGS performance
Catalizador de oro soportado en CuO/ZnO/Al2O3, procedimiento de preparación y uso
La presente invención se refiere la síntesis y aplicación de catalizadores de oro soportado en óxidos mixtos CuO/ZnO/Al2O3 preparados a partir de sus correspondientes sólidos con estructura hidrotalcita como catalizadores en la reacción de desplazamiento de gas de agua, para uso en procesadores de combustible acoplados a celdas de combustibles.Españ
- …