16 research outputs found

    Issues of assessment of the surface area effect on irrigated water consumption

    Get PDF
    This article focuses on improving water-saving technologies for efficient use of water resources, the development and recommendation of modern irrigation methods, and assessing the impact of surface area on irrigation water consumption

    TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are critical for the clearance of myelin debris in areas of demyelination, a key step to allow remyelination. TREM2 is expressed by microglia and promotes microglial survival, proliferation, and phagocytic activity. Herein we demonstrate that TREM2 was highly expressed on myelin-laden phagocytes in active demyelinating lesions in the CNS of subjects with MS. In gene expression studies, macrophages from subjects with TREM2 genetic deficiency displayed a defect in phagocytic pathways. Treatment with a new TREM2 agonistic antibody promoted the clearance of myelin debris in the cuprizone model of CNS demyelination. Effects included enhancement of myelin uptake and degradation, resulting in accelerated myelin debris removal by microglia. Most importantly, antibody-dependent TREM2 activation on microglia increased density of oligodendrocyte precursors in areas of demyelination, as well as the formation of mature oligodendrocytes thus enhancing remyelination and axonal integrity. These results are relevant as they propose TREM2 on microglia as a potential new target to promote remyelination

    Identification of a Gene Regulatory Network Necessary for the Initiation of Oligodendrocyte Differentiation

    Get PDF
    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes requires extensive changes in gene expression, which are partly mediated by post-translational modifications of nucleosomal histones. An essential modification for oligodendrocyte differentiation is the removal of acetyl groups from lysine residues which is catalyzed by histone deacetylases (HDACs). The transcriptional targets of HDAC activity within OPCs however, have remained elusive and have been identified in this study by interrogating the oligodendrocyte transcriptome. Using a novel algorithm that allows clustering of gene transcripts according to expression kinetics and expression levels, we defined major waves of co-regulated genes. The initial overall decrease in gene expression was followed by the up-regulation of genes involved in lipid metabolism and myelination. Functional annotation of the down-regulated gene clusters identified transcripts involved in cell cycle regulation, transcription, and RNA processing. To define whether these genes were the targets of HDAC activity, we cultured rat OPCs in the presence of trichostatin A (TSA), an HDAC inhibitor previously shown to inhibit oligodendrocyte differentiation. By overlaying the defined oligodendrocyte transcriptome with the list of ‘TSA sensitive’ genes, we determined that a high percentage of ‘TSA sensitive’ genes are part of a normal program of oligodendrocyte differentiation. TSA treatment increased the expression of genes whose down-regulation occurs very early after induction of OPC differentiation, but did not affect the expression of genes with a slower kinetic. Among the increased ‘TSA sensitive’ genes we detected several transcription factors including Id2, Egr1, and Sox11, whose down-regulation is critical for OPC differentiation. Thus, HDAC target genes include clusters of co-regulated genes involved in transcriptional repression. These results support a de-repression model of oligodendrocyte lineage progression that relies on the concurrent down-regulation of several inhibitors of differentiation

    Issues of assessment of the surface area effect on irrigated water consumption

    No full text
    This article focuses on improving water-saving technologies for efficient use of water resources, the development and recommendation of modern irrigation methods, and assessing the impact of surface area on irrigation water consumption

    A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons

    No full text
    One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, cholera toxin β (CTB) immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope CTB, and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain.</p

    CNS Myelin Wrapping Is Driven by Actin Disassembly

    Get PDF
    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in&nbsp;vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility
    corecore