4,561 research outputs found

    Instanton induced charged fermion and neutrino masses in a minimal Standard Model scenario from intersecting D-branes

    Full text link
    String instanton Yukawa corrections from Euclidean D-branes are investigated in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1) D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it is found that superpotential contributions are induced by string instantons for the perturbatively forbidden entries of the up and down quark mass matrices. Analogous non-perturbative effects generate heavy Majorana neutrino masses and a Dirac neutrino texture with factorizable Yukawa couplings. For this latter case, a specific example is worked out where it is shown how this texture can reconcile the neutrino data.Comment: 17 pages, 3 figure

    Neutrino Masses and Mixings from String Theory Instantons

    Get PDF
    We study possible patterns of neutrino masses and mixings in string models in which Majorana neutrino masses are generated by a certain class of string theory instantons recently considered in the literature. These instantons may generate either directly the dim=5 Weinberg operator or right-handed neutrino Majorana masses, both with a certain flavour-factorised form. A hierarchy of neutrino masses naturally appears from the exponentially suppressed contributions of different instantons. The flavour structure is controlled by string amplitudes involving neutrino fields and charged instanton zero modes. For some simple choices for these amplitudes one finds neutrino mixing patterns consistent with experimental results. In particular, we find that a tri-bimaximal mixing pattern is obtained for simple symmetric values of the string correlators.Comment: 24 pages, 2 figure

    Fine tuning as an indication of physics beyond the MSSM

    Full text link
    We investigate the amount of fine tuning of the electroweak scale in the presence of new physics beyond the MSSM, parametrized by higher dimensional operators. We show that these significantly reduce the MSSM fine tuning to Delta<10 for a Higgs mass between the LEPII bound and 130 GeV, and a corresponding scale M_* of new physics as high as 30 to 65 times the Higgsino mass. If the fine-tuning criterion is indeed of physical relevance, the findings indicate the presence of new physics in the form of new states of mass of O(M_*) that generated the effective operators in the first instance. At small tanβ\tan\beta these states can be a gauge singlet or a SU(2) triplet. We derive analytical results for the EW scale fine-tuning for the MSSM with higher dimensional operators, including the quantum corrections which are also applicable to the pure MSSM case in the limit the coefficients of the higher dimension operators vanish. A general expression for the fine-tuning is also obtained for an arbitrary two-Higgs doublet potential.Comment: 27 pages, 6 Figures; Eqs.(15)-(18) and (A.2)-(A.5) simplified; figures 1-3 update

    Background Symmetries In Orbifolds With Discrete Wilson Lines

    Full text link
    Target space symmetries are studied for orbifold compactified string theories containing Wilson line background fields. The symmetries determined are for those moduli which contribute to the string loop threshold corrections of the gauge coupling constants. The groups found are subgroups of the modular group PSL(2,Z)PSL(2, Z) and depend on the choice of discrete Wilson lines and the shape of the underlying six-dimensional lattice.Comment: 31 pages, QMW--TH--94/0

    Securitization and Lending Standards: Evidence from the Wholesale Loan Market

    Get PDF
    securitization;bank risk taking;syndicated loans;financial crisis

    Radiative B-L symmetry breaking in supersymmetric models

    Get PDF
    We propose a scheme where the three relevant physics scales related to the supersymmetry, electroweak, and baryon minus lepton (B-L) breakings are linked together and occur at the TeV scale. The phenomenological implications in the Higgs and leptonic sectors are discussed.Comment: 4 page

    Using Paper Theatres as an Expressive Arts Therapy Method: Activating Imaginal Worlds in Community Arts Practice

    Get PDF
    Paper theatres are an artistic form that became widely popular in 19th century Europe. Also known as toy theatre and model theatre, a paper theatre has a small build-your-own proscenium and pre-cut paper characters that can be manipulated. Different styles of paper theatre can be found in several cultures. In contemporary art, the use of paper theatres in several modalities led to an exploration of whether such theatres also could be used as an art therapy method. Research was conducted into expressive art therapy principles, Jungian perspectives, and recent studies in neurosciences. The studies included in the literature review confirmed that the 2020-21 covid-19 pandemic was having a major impact on the mental health of the adult population. That led to two arts-based group research projects online, and one arts-based heuristic exploration. The initial therapies were implemented online due to the COVID-19 crisis. The outcome of this research and investigation found that art therapies involving paper theatre—implemented with a therapeutic structure and rationale—can be an expressive art therapy method suitable for community-based and individual interventions. Future research on paper theatres as a therapeutic method could focus on different populations, in-person (not online) methods, and a longer therapeutic plan of some eight weeks

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    Numerical evolution of matter in dynamical axisymmetric black hole spacetimes. I. Methods and tests

    Full text link
    We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetimes. The code has been put through a series of tests that verify that it functions correctly. Particularly, we develop and describe a new set of testbed calculations and techniques designed to handle dynamically sliced, self-gravitating matter flows on black holes, and subject the code to these tests. We make some studies of the spherical and axisymmetric accretion onto a dynamic black hole, the fully dynamical evolution of imploding shells of dust with a black hole, the evolution of matter in rotating spacetimes, the gravitational radiation induced by the presence of the matter fields and the behavior of apparent horizons through the evolution.Comment: 42 pages, 20 figures, submitted to Phys Rev
    corecore