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We propose a scheme where the three relevant physics scales related to the supersymmetry, electroweak,
and baryon minus lepton (B − L) breakings are linked together and occur at the TeV scale. The
phenomenological implications in the Higgs and leptonic sectors are discussed.
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Nonvanishing neutrino masses and the existence of non-
baryonic dark matter (DM) represent the only two firm observa-
tional evidences of new physics (NP) beyond the Standard Model
(SM). The energy scale(s) related to such NP are unknown with
theoretical proposals ranging from scales close to the electroweak
(EW) scale (TeV NP) to much higher scales (GUT or Planck NP).
A possible criterion to follow is to link such NP scale(s) to the
breaking of symmetries associated to the new particles appear-
ing in the enlarged NP particle spectrum. For instance, in the case
where NP is identified with supersymmetry (SUSY), the energy
scale at which the breaking of SUSY occurs (in the observable sec-
tor) and the typical mass scale for the SUSY particles have to be
linked to the (EW) scale if SUSY is called to provide the correct
ultraviolet completion of the SM to avoid the gauge hierarchy prob-
lem. In turn, the presence of SUSY particles at the TeV scale could
provide a solution to the DM problem through the presence of the
stable lightest SUSY particle in models with the discrete symmetry
called R parity.

In the case of neutrino masses, the new particles which are
involved are likely to be the right-handed (RH) neutrinos and the
relevant symmetry to be broken should be the difference of the
baryon (B) and lepton (L) quantum numbers (B − L). Indeed, the
(Majorana) mass of the RH neutrino breaks L or B − L and, once
present, one is naturally lead to light neutrino masses through a
see-saw mechanism. However, at variance with the SUSY case, here
the breaking scale of B − L is left undetermined by the request of
obtaining a phenomenologically viable neutrino mass spectrum.

In this Letter we propose a possible link between the B − L and
EW scales in SUSY models with a see-saw mechanism for neutrino
masses. Once we are in a SUSY context, we can nicely correlate the
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EW and SUSY scales through the mechanism of radiative breaking
of the EW symmetry. Indeed, it was shown [1] that radiative cor-
rections may drive the squared Higgs mass from positive initial
values at the GUT scale to negative values at the EW scale. In such
a framework, the size of the Higgs vacuum expectation value (VEV)
responsible for the EW breaking is determined by the size of the
top Yukawa coupling and of the soft SUSY breaking terms. Analo-
gously, we show that in a SUSY see-saw scheme it is possible to
radiatively induce the breaking of B − L having the scale of such
breaking directly linked to the size of some (large) RH neutrino
Yukawa coupling and of the soft SUSY breaking scale. In particu-
lar, we prove that for such Yukawa coupling of the order of the
top quark Yukawa coupling, the radiative mechanism leads to a
B − L breaking scale of the same order as the scale of the SUSY
soft breaking terms, i.e. a TeV breaking of B − L.

Our result nicely fits with a minimal extension for the SM based
on TeV scale gauge B − L that has been recently proposed [2]. It
was shown that this type of models can account for current exper-
imental results of light neutrino masses and their large mixing [3].
In addition, the extra-gauge boson and extra-Higgs predicted in
this model have a rich phenomenology and can be detected at
the LHC [4]. A non-vanishing vacuum expectation value (VEV), v ′ ,
that breaks the B − L gauge symmetry was obtained in analogy
with what happens for the EW breaking. However, in such con-
struction the scale of the scalar potential leading to v ′ was set
by hand to be of O (1) TeV, much in the same way that the VEV
responsible for the breaking of the EW symmetry arises from an
ad hoc choice of the μ and λ parameters of the SM scalar po-
tential. In this Letter we construct a supersymmetric version of
G B−L = SU(3) × SU(2)L × U (1)Y × U (1)B−L model, which has been
analyzed in Refs. [2–4].

We work out the renormalization group equation (RGE) for the
relevant parameters in the B − L sector, in particular the squared
mass of the extra Higgs bosons. We study their evolution from
GUT to TeV scale and show that the squared mass of one of these
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Higgs bosons can be pulled down to negative values leading to
the spontaneous breaking of the B − L symmetry. The spontaneous
breaking of the gauge B − L symmetry is going to occur at a scale
of O (1) TeV or slightly higher when the following three conditions
are met: (i) The soft SUSY breaking terms associated to the B − L
sector are of order TeV. (ii) The analog of the Higgs mixing term
μ in the MSSM, namely the mixing parameter of the new Higgs
superfields involved in the B − L breaking, μ′ , is of the same size
as the soft SUSY breaking terms. (iii) The Yukawa coupling of the
right-handed neutrino, Y N = MN/v ′ is of order unity. A relevant
remark is in order. In building our extension of the MSSM, we in-
troduce in the superpotential of the theory a new parameter, μ′ ,
which has the dimension of a mass, in addition to the Higgs mix-
ing μ parameter of the MSSM. As known, this latter parameter
is present in the SUSY invariant part of the theory and hence its
scale is not directly set by the scale of the soft breaking parame-
ters. Why μ should then be at the TeV scale and not, for instance,
at the superlarge scale of supergravity breaking constitutes the so-
called μ problem. A possible suggestion to obtain a μ scale of the
order of the EW scale is known as the Giudice–Masiero mecha-
nism [5]. Here we are advocating that this same mechanism could
be responsible also for the origin of the μ′ parameter, hence im-
plying a similar mass scale for both of them.

We consider the minimal supersymmetric version of the B − L
extension of the SM based on the gauge group G B−L = SU(3)C ×
SU(2)L × U (1)Y × U (1)B−L . The particle content of the SUSY B − L
includes the following fields in addition to those of the MSSM:
three chiral right-handed superfields (Ni), the vector superfield
necessary to gauge the U (1)B−L (Z B−L ), and two chiral SM-singlet
Higgs superfields (χ1, χ2 with B − L charges Y B−L = −2 and
Y B−L = +2, respectively). As in the MSSM, the introduction of
a second Higgs singlet (χ2) is necessary in order to cancel the
U (1)B−L anomalies produced by the fermionic member of the first
Higgs (χ1) superfield. The Y B−L for quark and lepton superfields
are assigned in the usual way.

We remark that the above particle assignment ensures that
mixing effects between the two U (1) factors [6] arise only at the
two-loop level, hence keeping them small enough [6]. Indeed, the
three chiral fermion families define complete multiplets of a sim-
ple group (SO(10)) containing both U (1) factors (see, in particular
the first of [6]). As for the Higgs content, since our scalar Higgs
multiplets transform under either hypercharge or B − L, but not
both, there is no Higgs mediated one-loop contribution to the mix-
ing of the two U (1) gauge bosons. Since there is no Higgs vacuum
expectation value breaking simultaneously B − L and the linear
combination of Y and T3R orthogonal to U (1)em, this is ensured
even after the spontaneous symmetry breaking, i.e. in the mix-
ing of the Z and Z ′ massive vector bosons (where Z ′ denotes the
B − L gauge boson). Since there is no exact symmetry preventing
such mixing, we expect two-loop contributions to originate it, but
the effect is then small enough to be neglected in the one-loop
treatment of our analysis.

The interactions between Higgs and matter superfields are de-
scribed by the superpotential

W = (YU )i j Q i H2U c
j + (Y D)i j Q i H1 Dc

j + (Y L)i j Li H1 Ec
j

+ (Yν)i j Li H2Nc
j + (Y N )i j Nc

i Nc
jχ1 + μH1 H2 + μ′χ1χ2. (1)

Interestingly enough, the presence of the B −L gauge symmetry,
forbids the appearance in the superpotential of the B or L violating
terms. Hence, in this model there is no need to impose an addi-
tional discrete symmetry (for instance, R parity) to achieve such
result.

Assuming flavor and gaugino universality at the grand unifica-
tion scale, M X = 3 × 1016 GeV, the SUSY soft breaking Lagrangian
at that scale reads
−Lsoft = m2
0

[|Q̃ i |2 + |Ũ i |2 + |D̃i |2 + |L̃i |2 + |Ẽ i |2 + |Ñi |2
+ |H1|2 + |H2|2 + |χ1|2 + |χ2|2

]
+ [

Y A
U Q̃ Ũ c H2 + Y A

D Q̃ D̃c H1 + Y A
E L̃ Ẽc H1

+ Y A
ν L̃ Ñc H2 + Y A

N Ñc Ñcχ1 + B(μH1 H2 + μ′χ1χ2) + h.c.
]

+ 1

2
M1/2

[
g̃a g̃a + W̃ a W̃ a + B̃ B̃ + Z̃ B−L Z̃ B−L + h.c.

]
, (2)

where (Y A)i j ≡ (Y A)i j . The tilde denotes the scalar components of
the chiral matter superfields and fermionic components of vector
superfields. We denote by H1,2 and χ1,2 also the scalar compo-
nents of the Higgs superfields H1,2 and χ1,2.

Let us now discuss how the B − L and electroweak symmetries
may be broken in the SUSY G B−L . We have to study the scalar
potential for the Higgs fields χ1,2 and H1,2 and check if there are
minima for which 〈χ1〉, 〈χ2〉 �= 0 and 〈H1〉, 〈H2〉 �= 0. The scalar
potential for H1,2 and χ1,2 is

V (H1, H2,χ1,χ2)

= 1

2
g2

(
H∗

1
τ a

2
H1 + H2

τ a

2
H2

)2

+ 1

8
g′ 2(|H2|2 − |H1|2

)2 + 1

2
g′′ 2(|χ2|2 − |χ1|2

)2

+ m2
1|H1|2 + m2

2|H2|2 − m2
3(H1 H2 + h.c.)

+ μ2
1|χ1|2 + μ2

2|χ2|2 − μ2
3(χ1χ2 + h.c.), (3)

where

m2
i = m2

0 + μ2, i = 1,2, m2
3 = −Bμ, (4)

μ2
i = m2

0 + μ′ 2, i = 1,2, μ2
3 = −Bμ′. (5)

As can be seen from Eq. (3), the potential V (H1, H2,χ1,χ2) results
from the sum of the usual MSSM scalar potential V (H1, H2) and of
the new potential V (χ1,χ2) which exhibits an apparent similarity
in its structure to V (H1, H2). For simplicity, in defining μ2

3 and m2
3

only one B parameter has been introduced.
As is known, the radiative breaking of the EW symmetry is in-

duced by the running from M X to the weak scale of m2
2. Given

the large value of the top Yukawa coupling, such running succeeds
to turn the positive value of m2

2 at M X to a negative value, hence
inducing the desired EW breaking.

Following the same steps as for the minimization of V (H1, H2)

in the MSSM, one readily obtains for the minimization of
V (χ1,χ2):

v ′ 2 = (
v ′ 2

1 + v ′ 2
2

) = (μ2
1 − μ2

2) − (μ2
1 + μ2

2) cos 2θ

2g′′ 2 cos 2θ
, (6)

where 〈χ1〉 = v ′
1 and 〈χ2〉 = v ′

2. The angle θ is defined as tan θ =
v ′

1/v ′
2. Consequently, the Z B−L gauge boson acquires a mass:

M2
Z B−L

= 4g′′2 v ′2 [2]. LEP II imposes the following stringent con-
straint on B − L gauge boson:

M Z ′/g′′ > 6 TeV. (7)

This implies that v ′ � O (TeV). Thus, if the coupling g′′ ∼ O (0.1),
then M Z ′ � O (600) GeV. In our analysis, we determine the value
of g′′ at electroweak scale from its renormalization group equation
that yields to

α̃B−L(t) = α̃B−L(0)

1 + 12α̃B−L(0)t
. (8)

Here α̃B−L(t) = g′′(t)/16π2, t = ln(M2
X/Q 2), and α̃B−L(0) is the

B − L gauge coupling at GUT scale M X , where a gauge coupling
unification is assumed. We also use SO(10) normalization factor:
(3/8) for U (1)B−L .
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The boundness from below of the potential V (χ1,χ2) requires

μ2
1 + μ2

2 > 2|μ2
3|. (9)

This represents the stability condition for the potential. Further-
more, to avoid that 〈χ1〉 = 〈χ2〉 = 0 be a local minimum one has
to impose that

μ2
1μ

2
2 < μ4

3. (10)

It is not possible to simultaneously fulfill both the above conditions
for the positive values of μ2

1 and μ2
2 as given in Eq. (4). Indeed, if

μ4
1 = μ4

2 < μ4
3, then the condition Eq. (9) is not satisfied and the

scalar potential is unbounded from below in the direction 〈χ1〉 =
〈χ2〉 → ∞.

The problem we encounter is reminiscent of what occurs for
the electroweak symmetry breaking, i.e. for the V (H1, H2) part
of the potential V (H1, H2,χ1,χ2). In that case, the problem of
obtaining the desired breaking vacuum while guaranteeing the sta-
bility of the potential is solved [1] by noting that the boundary
conditions Eq. (4) are valid only at the GUT scale. However, in
the running from that large scale down to MW , one finds that m2

1
and m2

2 get renormalized differently if H1 and H2 couple with dif-
ferent strength to fermions. Indeed, H2 couples to the top quark
with a large Yukawa coupling. The running from M X down to
the weak scale reduces the squared Higgs masses, until eventually
the minimization condition is satisfied and the electroweak gauge
symmetry is broken.

We consider the B − L renormalization group equations and an-
alyze the running of the scalar masses m2

χ1
and m2

χ2
. The key point

for implementing the radiative B − L symmetry breaking is that
the scalar potential V (χ1,χ2) receives substantial radiative cor-
rections. In particular, a negative (mass)2 would trigger the B − L
symmetry breaking of B − L. We argue that the masses of Higgs
singlets χ1 and χ2 run differently in the way that m2

χ1
can be

negative whereas m2
χ2

remains positive. The renormalization group
equation (RGE) for the B − L couplings and mass parameters can be
derived from the general results for SUSY RGEs of Ref. [7]. Here, for
simplicity, we neglect the couplings of the first two generations. As
is known, neglecting the Yukawa couplings of the first two genera-
tions for the SM quark and lepton is quite justified approximation
due to the smallness of their masses. However, for the Yukawa
coupling hN , this is a further assumption. Also it is more conve-
nient to write the RGE in terms of gauge couplings: α̃i = g2

i /16π2

and Yukawa couplings: Ỹ i = Y 2
i /16π2.

The RGEs for the masses of the B − L Higgs field χ1 and right-
handed sneutrino read

dm2
χ1

dt
= 6α̃B−L M2

B−L − 2Ỹ N3

(
m2

χ1
+ 2m2

N3
+ A2

N3

)
, (11)

dm2
N3

dt
= 3

2
α̃B−L M2

B−L − Ỹ N3

(
m2

χ1
+ 2m2

N3
+ A2

N3

)
. (12)

Since the second Higgs χ2 has no interaction with any particle,
its evolution is given by

dm2
χ2

dt
= 6α̃B−L M2

B−L . (13)

The evolution of these mass parameters depends on the boundary
conditions at GUT scale. As mentioned, we assume universal soft
SUSY breaking at this scale, i.e.,

m2
χ1

(0) = m2
χ2

(0) = m2
N3

(0) = m2
0, (14)

Ma(0) = MB−L = M1/2,

a = 1,2,3 for SU(3)C , SU(2)L, U (1)Y , (15)

Ai(0) = AN3 = A0, i = t,b, τ . (16)
Fig. 1. The evolution of the B − L scalar masses from GUT to TeV scale for
m0 = M1/2 = A0 = 200 GeV and Y N3 ∼ O(0.1).

Fig. 1 reports the result of the running. In this figure, we set
m0 = M1/2 = A0 = 200 GeV and order one Y N3 � MN3/v ′ is as-
sumed. As can be seen from this figure, m2

χ1
drops rapidly to

negative region, while m2
χ2

remains positive. Analogously to the ra-
diative electroweak symmetry breaking, this mechanism works for
large Yukawa coupling. It is worth noting the faster drop of m2

χ1

in comparison with that of m2
H2

. Indeed, m2
χ1

receives a positive
contribution in its running only from the B − L gaugino, while the
SU(2)L and U (1)Y gaugino masses are responsible for the positive
contributions in the running of m2

H2
.

Also in Fig. 1, we plot the scale evolution for the scalar mass
m2

N3
. Although m2

N3
decreases in the running from M X , it remains

positive at the TeV scale. Therefore, the B − L breaking via a non-
vanishing vacuum expectation value for right-handed sneutrino
does not occur in the present framework.

The phenomenology of TeV scale neutral gauge boson Z B−L is
very rich and its potential discovery at LHC has been recently an-
alyzed in Ref. [4]. Also, the three SM singlet fermions, νRi in the
superfields Ni , get the following masses:

MNi = v ′Y Ni ∼O(TeV). (17)

These three particles play the role of right handed neutrinos. In ad-
dition, the electroweak symmetry breaking induces the Dirac mass
term:

mD = v√
2

Yν . (18)

Therefore, the observed light-neutrino masses can be obtained
through the usual seesaw mechanism with Yukawa neutrino cou-
pling, Yν , of order O(10−6) [3].

The Higgs sector of this model consists of two Higgs dou-
blets and two Higgs singlets with no mixing. However, after the
B − L symmetry breaking, one of the four degrees of freedom
contained in the two complex singlet χ1 and χ2 is swallowed in
the usual way by the Z 0

B−L to become massive. Therefore, in ad-
dition to the usual five MSSM Higgs bosons, namely one neutral
pseudoscalar Higgs bosons A, two neutral scalars h and H and a
charged Higgs boson H± , three new physical degrees of freedom
remain. They form a neutral pseudoscalar Higgs boson A′ and two
neutral scalars h′ and H ′ . Their masses at tree level are given by

m2
A′ = μ2

1 + μ2
2, (19)

m2
H ′,h′ = 1

2

(
m′ 2

A + M2
Z B−L

±
√

(m2
A′ + M2

Z )2 − 4m′ 2
A M2

Z cos 2θ
)
. (20)
B−L B−L
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Here θ = tan−1 v ′
1/v ′

2 and μi with i = 1,2 are defined in Eq. (5).
From the expression of the lightest B − L Higgs boson, one finds
the following upper bound

m′
h � M Z B−L | cos 2θ |. (21)

However, in analogy with the large radiative corrections to the
lightest MSSM Higgs mass due to the top–stop loop, the N–Ñ loop
can induce large correction leading to mh′ > mZ ′ .

The enlarged sneutrino sector of this model deserves some at-
tention. Indeed, in the present SUSY extension of the G B−L model,
a significant mixing between the left-handed and right-handed
sneutrinos can be obtained. This would lead to what is known as
sneutrino–antisneurino oscillation [8]. The 12 × 12 sneutrino mass
matrix, in the basis (φL, φN) with φL = (ν̃L, ν̃

∗
L ) and φN = (ν̃R , ν̃∗

R),
is given by

M2 = 1

2

(
M2

LL M2
LN

M2
N L M2

N N

)
. (22)

The detailed expressions for the 6 × 6 matrices M2
AB , for A, B =

L, N can be found in Ref. [8]. In general, the order of magnitude of
the entries of this matrix can be estimated as follows:

M2 = 1

2

(
O(v2) O(v v ′)
O(v v ′) O(v ′ 2)

)
. (23)

Since v ′ ∼ TeV, the sneutrino matrix elements are of the same
order and there is no seesaw type behavior as usually found in
MSSM extended with heavy right-handed neutrinos. Therefore a
significant mixing among the left- and right-handed sneutrinos
is obtained. The phenomenological consequences for such mixing
have been studied in [9].

In conclusion, we have shown that in a SUSY extension of the
SM where B − L is gauged, it is possible to link together the elec-
troweak, B − L and soft SUSY breakings at a scale of O(TeV). The
ensuing richer TeV phenomenology for the coming LHC and neu-
trino physics opens new prospects and deserves further attention.
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